Vol. 148
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-10-07
A W-Band Waveguide-to-Suspended Stripline in-Line Transition with Single-Side Fin-Line
By
Progress In Electromagnetics Research C, Vol. 148, 137-143, 2024
Abstract
A novel full W-band in-line waveguide-to-suspended stripline transition based on reversed single-sided fin-line structure is proposed. To achieve wideband mode conversion and impedance matching, a combination of an asymmetric antipodal fin-line and a reversed single-sided fin-line structure is employed. The electromagnetic (EM) wave undergoes a mode transition from TE10 mode to quasi-parallel plate waveguide(Q-PPW) mode through the asymmetric antipodal fin-line. Subsequently, the mode transforms into suspended stripline mode due to the reversed single-side fin-line structure. The proposed in-line transition achieves a wide bandwidth through a simplified structural design. To assess the performance of the proposed design, a back-to-back in-line transition operating at the W-band is fabricated and measured. The measured results of the back-to-back structure demonstrate that the reflection coefficient is better than -13 dB, and the insertion loss is less than 0.54 dB across the entire W-band (75-110 GHz). The advantages of the proposed transition, such as wide bandwidth and simple structure, render it highly promising for advanced millimeter-wave circuits and systems.
Citation
Baochen Du, Yang Chen, and Hongfu Meng, "A W-Band Waveguide-to-Suspended Stripline in-Line Transition with Single-Side Fin-Line," Progress In Electromagnetics Research C, Vol. 148, 137-143, 2024.
doi:10.2528/PIERC24072502
References

1. Assaf, Mohamad, Adnan Malki, and Alaa Aldin Sarhan, "Synthesis and design of MMR-based ultra-wideband (UWB) band pass filter (BPF) in suspended stripline (SSL) technology," Progress In Electromagnetics Research Letters, Vol. 84, 123-130, 2019.

2. Jayasankar, Divya, Vladimir Drakinskiy, Nick Rothbart, Heiko Richter, Xiang Lü, Lutz Schrottke, Holger T. Grahn, Martin Wienold, Heinz-Wilhelm Hübers, Peter Sobis, and Jan Stake, "A 3.5-THz, × 6-harmonic, single-ended Schottky diode mixer for frequency stabilization of quantum-cascade lasers," IEEE Transactions on Terahertz Science and Technology, Vol. 11, No. 6, 684-694, Nov. 2021.

3. Zhang, Yong, Wei Zhao, Yunfei Wang, Tianhao Ren, and Yapei Chen, "A 220 GHz subharmonic mixer based on schottky diodes with an accurate terahertz diode model," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2311-2316, 2016.

4. Zhang, Lisen, Shixiong Liang, Yuanjie Lv, Dabao Yang, Xingchang Fu, Xubo Song, Guodong Gu, Peng Xu, Yanmin Guo, Aimin Bu, et al. "High-power 300 GHz solid-state source chain based on GaN doublers," IEEE Electron Device Letters, Vol. 42, No. 11, 1588-1591, Nov. 2021.

5. Xiao, Jian-Kang, Meng-Yang Yang, Xiao-Bo Zhang, and Yi Miao, "Millimeter wave wideband bandpass filters based on LCP self-packaged multi-layer suspended line," 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-3, Guangzhou,China, Nov. 2021.

6. Chen, Yinzhou, Kaixue Ma, and Yongqiang Wang, "A novel V-band substrate integrated suspended line to rectangular waveguide transition," 2018 IEEE/MTT-S International Microwave Symposium --- IMS, 186-189, Philadelphia, PA, USA, Jun. 2018.

7. Kumar, G. Arun and D. R. Poddar, "Broadband rectangular waveguide to suspended stripline transition using dendritic structure," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 11, 900-902, Nov. 2016.

8. Guo, Jian, Jie Xu, Yinjie Cui, Zhengbin Xu, and Cheng Qian, "Q-band waveguide-to-suspended-stripline transition with DC/IF," 2014 Asia-Pacific Microwave Conference, 283-285, Sendai, Japan, Nov. 2014.

9. Głogowski, Rafał, Jean-François Zürcher, Custódio Peixeiro, and Juan R. Mosig, "Ka-band rectangular waveguide to suspended stripline transition," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 575-577, Nov. 2013.

10. Glance, B. and R. Trambarulo, "A waveguide to suspended stripline transition," IEEE Transactions on Microwave Theory and Techniques, Vol. 21, No. 2, 117-118, Feb. 1973.

11. Ohm Roy, Hari, Sanjib Mandal, A. K. Shukla, and A. K. Kush, "Waveguide to suspended stripline transition techniques at 140 GHz," 2008 International Conference on Recent Advances in Microwave Theory and Applications, 110-112, Jaipur, India, Nov. 2008.

12. Guo, Jian, Zhengbin Xu, Cheng Qian, and Jun Hong, "Inline waveguide to suspended stripline transition with DC/IF return path," Microwave and Optical Technology Letters, Vol. 59, No. 3, 729-732, 2017.

13. Jin, Wenwei, Yong Zhang, Ruimin Xu, and Bo Yan, "A wideband waveguide-to-suspended microstrip line transition for millimeter-wave application," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 5, 1-2, Shenzhen, China, May 2012.

14. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.