Vol. 147
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-09-06
Calculation and Analysis of Eddy Current Loss in High Temperature Permanent Magnet Canned Motor
By
Progress In Electromagnetics Research C, Vol. 147, 145-152, 2024
Abstract
As an important part of the primary circuit system of a nuclear power plant, the safe and stable operation of the canned motor of a nuclear main pump is crucial. The existence of stator can and rotor can in the air gap of a canned motor will generate additional eddy current loss during the operation of the motor, which will be detrimental to the long-term stable operation of the motor. Therefore, in this paper, in order to analyze and weaken the eddy current loss generated on the shielding can, using the empirical formula method, the eddy current loss generated by the shielding can before optimization is calculated, and the relationship among the eddy current loss, can thickness, and motor speed is derived. Subsequently, two shielding can structure optimization schemes were proposed, and the reduction of eddy current loss after optimization was calculated using finite element simulation software. The effects of different optimization schemes were compared. Finally, peak torque and current experiments are conducted on the original motor to verify the accuracy of the finite element calculation results. The results show that both optimization schemes proposed in this paper can reduce the eddy current loss, and the axial segmentation scheme has a better reduction effect on the shielding can.
Citation
Quanfeng Li, Ziwei Wang, and Xiang Li, "Calculation and Analysis of Eddy Current Loss in High Temperature Permanent Magnet Canned Motor," Progress In Electromagnetics Research C, Vol. 147, 145-152, 2024.
doi:10.2528/PIERC24070601
References

1. Yu, Qiang, Christian Laudensack, and Dieter Gerling, "Loss analysis of a canned switched reluctance machine," 2011 International Conference on Electrical Machines and Systems, 1-5, Beijing, China, 2011.

2. Robinson, R. C., I. Rowe, and L. E. Donelan, "The calculation of can losses in canned motors," Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, Vol. 76, No. 3, 312-315, 1957.

3. Yu, Lingxin, "Calculation characteristics of shielded motors," Large motor technology, No. 4, 24-30, 1979.

4. Yang, T., Finite element analysis and calculation of electromagnetic field of cage-type solid rotor canned motor, Huazhong University of Science and Technology, 2006.

5. Guo, Chunye, Loss analysis and temperature rise calculation of shielded motors for nuclear power, Shenyang University of Technology, 2013.

6. Li, Wei, Xiaobo Jiang, and Lu Sun, "Analysis and experimental verification of rotor eddy current loss of high-speed permanent magnet motor with different canned motor structures," Modern Machinery, No. 03, 39-43, 2022.

7. Chu, Sai, Shielding sleeve effect and eddy current analysis of shielded permanent magnet motor, No. 5, China University of Mining and Technology, 2020.

8. Yu, Tianhao, Ming Li, and Shuxian Lun, "Study on the effect of shielding sleeve material on electromagnetic field and temperature field of shielded permanent magnet synchronous motor," Electrical Machines and Control Applications, Vol. 51, No. 04, 90-101, 2024.

9. Uneyama, Dai, Yuji Akiyama, Shinya Manome, and Tomokazu Naruta, "The proposal of can loss estimation method of canned motor," 2007 International Conference on Electrical Machines and Systems (ICEMS), 882-885, Seoul, Korea (South), Oct. 2007.

10. Wang, Jiangning, Guobiao Cai, Nanjia Yu, Chuang Zhou, Xiaoming Gu, and Li Cao, "Experimental study on the internal temperature rise of a high-speed canned motor pump for liquid rocket engines," Journal of Physics: Conference Series, Vol. 2707, No. 1, 012111, 2024.