Vol. 150
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-12-02
Millimeter-Wave Channel Measurements for 5G Networks Using a Low Cost Experimental Setup
By
Progress In Electromagnetics Research C, Vol. 150, 169-177, 2024
Abstract
This contribution presents the design and validation of a portable and low-cost experimental setup of a sounder for channel characterization at the millimeter wave band for 5G systems (Frequency Range 2 - FR2). Unlike the high cost application-specific equipment employed by many research groups, universities and telecommunication companies, which also requires adequate mounting and transport to and within the measurement sites, our channel sounder integrates several hardware and software components that result in a lightweight and convenient device for manual operation. Our device enables measurements at 26 GHz, a band earmarked for the upcoming deployment of 5G systems in the millimeter wave band in Colombia. We present channel measurements to validate the performance of the experimental setup and to assess the adherence to the predictions of the 3GPP (3rd Generation Partnership Project) TR (Technical Report) 38.901 standard propagation model, achieving favorable results.
Citation
Javier Enrique Arévalo Peña, Juan Sebastián Chávez Martinez, and Javier Leonardo Araque Quijano, "Millimeter-Wave Channel Measurements for 5G Networks Using a Low Cost Experimental Setup," Progress In Electromagnetics Research C, Vol. 150, 169-177, 2024.
doi:10.2528/PIERC24052408
References

1. Lee, W., Wireless and Cellular Telecommunications, McGraw-Hill, 2010.

2. Rappaport, Theodore S., Robert W. Heath Jr., Robert C. Daniels, and James N. Murdock, Millimeter Wave Wireless Communications, Pearson Education, 2015.

3. Wen, Zhu and Hongwei Kong, "MmWave MIMO channel sounding for 5G," 1st International Conference on 5G for Ubiquitous Connectivity, 192-197, Akaslompolo, Finland, Nov. 2014.

4. Rappaport, Theodore S., Shu Sun, Rimma Mayzus, Hang Zhao, Yaniv Azar, Kevin Wang, George N. Wong, Jocelyn K. Schulz, Mathew Samimi, and Felix Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.

5. Rappaport, Theodore S., George R. MacCartney, Mathew K. Samimi, and Shu Sun, "Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design," IEEE Transactions on Communications, Vol. 63, No. 9, 3029-3056, 2015.

6. Hindia, Mohammad Nour, Ahmed Mohammed Al-Samman, Tharek Abdul Rahman, and T. M. Yazdani, "Outdoor large-scale path loss characterization in an urban environment at 26, 28, 36, and 38 GHz," Physical Communication, Vol. 27, 150-160, 2018.

7. Ai, Bo, Ke Guan, Ruisi He, Jianzhi Li, Guangkai Li, Danping He, Zhangdui Zhong, and Kazi Mohammed Saidul Huq, "On indoor millimeter wave massive MIMO channels: Measurement and simulation," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 7, 1678-1690, 2017.

8. Papazian, Peter B., Camillo Gentile, Kate A. Remley, Jelena Senic, and Nada Golmie, "A radio channel sounder for mobile millimeter-wave communications: System implementation and measurement assessment," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 9, 2924-2932, 2016.

9. Chizhik, Dmitry, Jinfeng Du, Rodolfo Feick, Mauricio Rodriguez, Guillermo Castro, and Reinaldo A. Valenzuela, "Path loss and directional gain measurements at 28 GHz for non-line-of-sight coverage of indoors with corridors," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4820-4830, 2020.

10. Du, Jinfeng, Dmitry Chizhik, Reinaldo A. Valenzuela, Rodolfo Feick, Guillermo Castro, Mauricio Rodriguez, Tingjun Chen, Manav Kohli, and Gil Zussman, "Directional measurements in urban street canyons from macro rooftop sites at 28 GHz for 90% outdoor coverage," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 6, 3459-3469, 2021.

11. Chizhik, Dmitry, Jinfeng Du, Reinaldo A. Valenzuela, Dragan Samardzija, Stepan Kucera, Dmitry Kozlov, Rolf Fuchs, Juergen Otterbach, Johannes Koppenborg, Paolo Baracca, et al. "Directional measurements and propagation models at 28 GHz for reliable factory coverage," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 9596-9606, 2022.

12. Rubio, Lorenzo, Rafael P. Torres, Vicent M. Rodrigo Peñarrocha, Jesús R. Pérez, Herman Fernández, Jose-Maria Molina-Garcia-Pardo, and Juan Reig, "Contribution to the channel path loss and time-dispersion characterization in an office environment at 26 GHz," Electronics, Vol. 8, No. 11, 1261, 2019.

13. Rubio, Lorenzo, Vicent M. Rodrigo Peñarrocha, Marta Cabedo-Fabres, Bernardo Bernardo-Clemente, Juan Reig, Herman Fernández, Jesús R. Pérez, Rafael P. Torres, Luis Valle, and Óscar Fernández, "Millimeter-wave channel measurements and path loss characterization in a typical indoor office environment," Electronics, Vol. 12, No. 4, 844, 2023.

14. Arévalo, Javier E., Ariel E. Núñez, Cesar A. Azurdia, Javier L. Araque, and Jorge I. Sandoval, "Experimental indoor coverage of a commercial mm-Wave 5G network," 2023 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 13-14, Portland, OR, USA, Jul. 2023.

15. Peña, Javier Enrique Arévalo, Ariel Eleazar Nuñez Lobos, Cesar Augusto Azurdia Meza, Javier Leonardo Araque Quijano, and Jorge Ignacio Sandoval Arenas, "Experimental coverage measurements on a commercial 5G network in the 28 GHz mm-Wave band," 2023 IEEE MTT-S Latin America Microwave Conference (LAMC), 65-67, San José, Costa Rica, Dec. 2023.

16. Huang, Jie, Yu Liu, Cheng-Xiang Wang, Jian Sun, and Hailin Xiao, "5G millimeter wave channel sounders, measurements, and models: Recent developments and future challenges," IEEE Communications Magazine, Vol. 57, No. 1, 138-145, 2019.

17. Lin, Zhijian, Xiaojiang Du, Hsiao-Hwa Chen, Bo Ai, Zhifeng Chen, and Dapeng Wu, "Millimeter-wave propagation modeling and measurements for 5G mobile networks," IEEE Wireless Communications, Vol. 26, No. 1, 72-77, 2019.

18. Järveläinen, Jan, Katsuyuki Haneda, and Aki Karttunen, "Indoor propagation channel simulations at 60 GHz using point cloud data," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4457-4467, 2016.

19. Wu, Xianyue, Cheng-Xiang Wang, Jian Sun, Jie Huang, Rui Feng, Yang Yang, and Xiaohu Ge, "60-GHz millimeter-wave channel measurements and modeling for indoor office environments," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1912-1924, 2017.

20. Huang, Jie, Cheng-Xiang Wang, Rui Feng, Jian Sun, Wensheng Zhang, and Yang Yang, "Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 7, 1591-1605, 2017.

21. Rappaport, Theodore S., Yunchou Xing, George R. MacCartney, Andreas F. Molisch, Evangelos Mellios, and Jianhua Zhang, "Overview of millimeter wave communications for fifth-generation (5G) wireless networks --- With a focus on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6213-6230, 2017.

22. METIS, "Metis channel models," May 2015.

23. mmMAGIC "6–100 GHz channel modelling for 5G: Measurement and modelling plans in mmMAGIC," May 2016.

24. NYU WIRELESS "Nyusim: The open source 5G channel model," May 2018.

25. Fraunhofer Heinrich Hertz Institute "Quasu deterministic radio channel generator," May 2017.

26. MiWEBA "Wp5: Propagation, antennas and multiantenna technique d5.1: Channel modeling and characterization," May 2014.

27. 3rd Generation Partnership Project - 3GPP "Study on channel model for frequencies from 0.5 to 100 GHz," May 2017.

28. 3rd Generation Partnership Project - 3GPP "Study on channel model for frequency spectrum above 6 ghz," Jun. 2017.

29. Sivers Semicoductors "Evaluation kits (evk) and evaluation boards (evb)," Dec. 2020.

30. U-Blox, C94-M8P u-blox RTK Application Board Package. User Guide, 2017.

31. Research, E., "Power level controls: Overview," https://files.ettus.com/manual/pagepower.html.