Vol. 147
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-08-23
Design and Electromagnetic Performance Investigation of a Compact Pneumatic Drive Linear Generator Used in Wave Energy Conversion
By
Progress In Electromagnetics Research C, Vol. 147, 45-53, 2024
Abstract
Ocean wave energy is an inexhaustible clean new energy resource, and wave direct-drive linear generator is an energy converter receiving wide attention, but it suffers from the deficiencies of difficult energy harvesting, slow movement speed, large size, and small power generation, etc., so there is an urgent requirement to develop high-efficiency small-scale energy conversion devices. In this paper, a pneumatic drive linear generator (PDLG) is provided as a high efficient compact wave energy converter (WEC). The structure design and automatic reciprocating control system for the PDLG are implemented. The field distribution characteristics and parameters effects are analyzed using the finite-element method based on scalar magnetic potential. Finally, a prototype was fabricated to verify the performance of the PDLG. The experimental results are in good agreement with that of the theoretical prediction. The results of the study show that the provided pneumatic drive linear generator can meet the requirements of high efficient wave energy harvesting, compact structure, and larger power generation.
Citation
Yusheng Hu, Chouwei Guo, Mengyuan Niu, and Lijin He, "Design and Electromagnetic Performance Investigation of a Compact Pneumatic Drive Linear Generator Used in Wave Energy Conversion," Progress In Electromagnetics Research C, Vol. 147, 45-53, 2024.
doi:10.2528/PIERC24052404
References

1. Naghavi, Farid, Shrikesh Sheshaprasad, Matthew Gardner, Aghamarshana Meduri, Heon Yong Kang, and Hamid Toliyat, "Permanent magnet linear generator design for surface riding wave energy converters," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 4369-4375, Vancouver, BC, Canada, 2021.

2. Ho, Siu Lau, Qingsong Wang, Shuangxia Niu, and W. N. Fu, "A novel magnetic-geared tubular linear machine with halbach permanent-magnet arrays for tidal energy conversion," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, Nov. 2015.

3. Yamanouchi, Yuhi, Mizuki Tsuchiya, Ryohei Koga, Kota Yamaguchi, Mitsuru Izumi, and Tetsuya Ida, "Conceptual design of a linear power generator for undulator-type tidal current power generation," IEEE Transactions on Applied Superconductivity, Vol. 34, No. 3, 1-5, 2024.
doi:10.1109/TASC.2024.3370136

4. Polinder, Henk, Michiel E. C. Damen, and Fred Gardner, "Linear PM generator system for wave energy conversion in the AWS," IEEE Transactions on Energy Conversion, Vol. 19, No. 3, 583-589, 2004.
doi:10.1109/TEC.2004.827717

5. Polinder, H., M. E. C Damen, and F. Gardner, "Design, modelling and test results of the AWS PM linear generator," European Transactions on Electrical Power, Vol. 15, No. 3, 245-256, 2005.
doi:10.1002/etep.56

6. Polinder, Henk, Barrie C. Mecrow, Alan G. Jack, Phillip G. Dickinson, and Markus A. Mueller, "Conventional and TFPM linear generators for direct-drive wave energy conversion," IEEE Transactions on Energy Conversion, Vol. 20, No. 2, 260-267, Jun. 2005.
doi:10.1109/TEC.2005.845522

7. Seo, Sung-Won, Kyung-Hun Shin, Min-Mo Koo, Keyyong Hong, Ick-Jae Yoon, and Jang-Young Choi, "Experimentally verifying the generation characteristics of a double-sided linear permanent magnet synchronous generator for ocean wave energy conversion," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-4, Jun. 2020.

8. Hodgins, Neil, Ozan Keysan, Alasdair S. McDonald, and Markus A. Mueller, "Design and testing of a linear generator for wave-energy applications," IEEE Transactions on Industrial Electronics, Vol. 59, No. 5, 2094-2103, 2012.
doi:10.1109/TIE.2011.2141103

9. Baker, Nick J., M. A. Mueller, and E. Spooner, "Permanent magnet air-cored tubular linear generator for marine energy converters," Second International Conference on Power Electronics, Machines and Drives (PEMD 2004), Vol. 2, 862-867, 2004.

10. Colli, Vincenzo Delli, Piergiacomo Cancelliere, Fabrizio Marignetti, Roberto Di Stefano, and Maurizio Scarano, "A tubular-generator drive for wave energy conversion," IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, 1152-1159, Jun. 2006.
doi:10.1109/TIE.2006.878318

11. Prudell, Joseph, Martin Stoddard, Ean Amon, Ted KA Brekken, and Annette Von Jouanne, "A permanent-magnet tubular linear generator for ocean wave energy conversion," IEEE Transactions on Industry Applications, Vol. 46, No. 6, 2392-2400, Nov. 2010.
doi:10.1109/TIA.2010.2073433

12. Nie, Zanxiang, Xi Xiao, Richard McMahon, Peter Clifton, Yunxiang Wu, and Shiyi Shao, "Emulation and control methods for direct drive linear wave energy converters," IEEE Transactions on Industrial Informatics, Vol. 9, No. 2, 790-798, 2013.
doi:10.1109/TII.2012.2224120

13. Jing, Hailian, Naoki Maki, Tetsuya Ida, and Mitsuru Izumi, "Performance comparison of mw class tubular linear generators for wave energy conversion," Journal Title, Vol. 27, No. 6, 1-6, Sept. 2017.

14. Chen, Hao, Shuyan Zhao, Haiying Wang, and Rui Nie, "A novel single-phase tubular permanent magnet linear generator," Journal Title, Vol. 30, No. 4, 1-5, June. 2020.

15. Chen, Minshuo, Lei Huang, Minqiang Hu, Binbin Hu, and Ghulam Ahmad, "A spiral translator permanent magnet transverse flux linear generator used in direct-drive wave energy converter," IEEE Transactions on Magnetics, Vol. 57, No. 7, 1-5, July. 2021.
doi:10.1109/TMAG.2021.3076134

16. Qiu, Shuheng, Wei Zhao, Chi Zhang, Jonathan K. H. Shek, and Haifeng Wang, "A novel structure of tubular staggered transverse-flux permanent-magnet linear generator for wave energy conversion," IEEE Transactions on Energy Conversion, Vol. 37, No. 1, 24-35, March. 2022.
doi:10.1109/TEC.2021.3088722

17. Huang, Lei, Jing Liu, Haitao Yu, Ronghai Qu, Hao Chen, and Haiyang Fang, "Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator," IEEE Transactions on Applied Superconductivity, Vol. 25, No. 3, 1-5, 2015.

18. Farrok, Omar, Md Rabiul Islam, Kashem M. Muttaqi, Danny Sutanto, and Jianguo Zhu, "Design and optimization of a novel dual-port linear generator for oceanic wave energy conversion," IEEE Transactions on Industrial Electronics, Vol. 67, No. 5, 3409-3418, May 2020.
doi:10.1109/TIE.2019.2921293

19. Virtic, Peter, Peter Pisek, Tine Marcic, Miralem Hadziselimovic, and Bojan Stumberger, "Analytical analysis of magnetic field and back electromotive force calculation of an axial-flux permanent magnet synchronous generator with coreless stator," Journal Title, Vol. 44, No. 11, 4333-4336, Nov. 2008.

20. Musolino, Antonino, Marco Raugi, Rocco Rizzo, and Luca Sani, "A semi-anaytical model for the analysis of a permanent magnet tubular linear generator," Journal Title, Vol. 54, No. 1, 204-212, 2018.

21. Kim, Jeong-Man, Jang-Young Choi, Min-Mo Koo, Hyeon-Jae Shin, and Sung-Ho Lee, "Characteristic analysis of tubular-type permanent-magnet linear magnetic coupling based on analytical magnetic field calculations," Journal Title, Vol. 26, No. 4, 1-5, June. 2016.

22. Alhamadi, M. A., R. Wang, and N. A. Demerdash, "Vector potential 3D-finite element modeling of magnetic fields in permanent magnet devices," IEEE Transactions on Magnetics, Vol. 27, No. 6, 5016 -5018, Nov. 1991.
doi:10.1109/20.278725

23. Hayt, William and John Buck, Engineering Electromagnetics, The Mcgraw-Hill Companies, Inc., 2012.

24. Jin, Jianming, The Finite Element Method in Electromagnetics, Wiley-IEEE Press, 2002.