Vol. 147
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-08-22
Dual Higher-Order Orbital Angular Momentum Antenna Based on Rectangular Waveguide
By
Progress In Electromagnetics Research C, Vol. 147, 9-13, 2024
Abstract
This paper proposes an antenna based on a rectangular waveguide to generate dual higher-order orbital angular momentum (OAM) beams. The OAM beams with modes l = -6 and l = -7 are produced by radiating the higher order TE_mn transmitted in the rectangular waveguide through a slot. The measurement results indicate that the impedance bandwidth of less than -10 dB is approximately 37.8% in the range of 15-22 GHz, and the mode purity of the antenna is above 55%. The proposed antenna feed structure is simple and does not require a complex phase-shifting network to generate multi-mode and higher-order OAM beams. Such an OAM-based antenna with dual higher-order OAM beams can be utilized in MIMO-OAM communication systems, radar imaging systems, and rotational speed measurement systems.
Citation
Na Li, Lingling Jiao, Guirong Feng, Ping Li, and Xiao-Wei Shi, "Dual Higher-Order Orbital Angular Momentum Antenna Based on Rectangular Waveguide," Progress In Electromagnetics Research C, Vol. 147, 9-13, 2024.
doi:10.2528/PIERC24052006
References

1. Tamburini, Fabrizio, Elettra Mari, Anna Sponselli, Bo Thidé, Antonio Bianchini, and Filippo Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 033001, 2012.

2. Yagi, Yasunori, Hirofumi Sasaki, Tomoki Semoto, Tomoya Kageyama, Takayuki Yamada, Jun Mashino, and Doohwan Lee, "Field experiment of 117 Gbit/s wireless transmission using OAM multiplexing at a distance of 200 m on 40 GHz band," 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 1-5, Montreal, QC, Canada, 2021.

3. Yang, Tao and Gang Wang, "Rotational Doppler shift for electromagnetic waves carrying orbital angular momentum based on spectrum analysis," AIP Conference Proceedings, Vol. 1820, No. 1, 090024, 2017.

4. Zheng, Jiayu, Shilie Zheng, Zhenlei Shao, and Xianmin Zhang, "Analysis of rotational Doppler effect based on radio waves carrying orbital angular momentum," Journal of Applied Physics, Vol. 124, No. 16, 164907, 2018.

5. Zhang, Yi-Ming and Jia-Lin Li, "Analyses and full-duplex applications of circularly polarized OAM arrays using sequentially rotated configuration," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7010-7020, Dec. 2018.

6. Thidé, B., H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, Aug. 2007.

7. Lee, Doohwan, Hirofumi Sasaki, Hiroyuki Fukumoto, Yasunori Yagi, Takana Kaho, Hiroyuki Shiba, and Takashi Shimizu, "An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing," 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 1-5, Porto, Portugal, Jun. 2018.

8. Meng, Xiangshuai, Jiaji Wu, Zhensen Wu, Lin Yang, Li Huang, Xi Li, Tan Qu, and Zhe Wu, "Generation of multiple beams carrying different orbital angular momentum modes based on anisotropic holographic metasurfaces in the radio-frequency domain," Applied Physics Letters, Vol. 114, No. 9, Mar. 2019.

9. Shen, Yizhu, Jiawei Yang, Hongfu Meng, Wenbin Dou, and Sanming Hu, "Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source," Applied Physics Letters, Vol. 112, No. 14, 141901, Apr. 2018.

10. Zhang, Weite, Shilie Zheng, Xiaonan Hui, Yiling Chen, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Four-OAM-mode antenna with traveling-wave ring-slot structure," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 194-197, 2016.

11. Liang, Jiajun and Shengli Zhang, "Orbital angular momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications," IEEE Access, Vol. 4, 9570-9574, 2016.

12. Zhang, Zongtang and Shaoqiu Xiao, "Generation of multiple orbital angular momentum (OAM) modes with a circularly polarized multimode patch antenna," 2016 IEEE MTT-S International Wireless Symposium (IWS), 1-4, Shanghai, China, Mar. 2016.

13. Tennant, Alan and Ben Allen, "Generation of radio frequency OAM radiation modes using circular time-switched and phased array antennas," 2012 Loughborough Antennas & Propagation Conference (LAPC), 1-4, Loughborough, Leicestershire, United Kingdom, Nov. 2012.

14. Yan, Yan, Guodong Xie, Martin P. J. Lavery, Hao Huang, Nisar Ahmed, Changjing Bao, Yongxiong Ren, Yinwen Cao, Long Li, Zhe Zhao, Andreas F. Molisch, Moshe Tur, Miles J. Padgett, and Alan E. Willner, "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nature Communications, Vol. 5, No. 1, 4876, Dec. 2014.

15. Zhang, Zhuofan, Shilie Zheng, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Generation of plane spiral OAM waves using traveling-wave circular slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 8-11, 2017.