Vol. 146
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-07-30
Quasi-Monomode Resonator for Ka-Band Applications
By
Progress In Electromagnetics Research C, Vol. 146, 13-20, 2024
Abstract
The paper presents a model of an open resonator exhibiting a single high-Q eigen oscillation within a one-octave frequency band. The resonator is synthesized by integrating a diffraction radiation antenna, which comprises a segment of a dielectric waveguide above a metal substrate with a diffraction grating, into a system of flat reflectors aligned parallel to the wave fronts of surface and bulk waves generated by the antenna. A pulse response with an amplitude-frequency characteristic featuring one pronounced resonant maximum, which corresponds to an eigen oscillation with Q factor exceeding 104, has been achieved in the proposed system. The optical length of the resonator exceeds the wavelength of the working oscillation by over 50 times. The feasibility of tuning the resonator via moving both the mirrors and the diffraction grating is demonstrated. The proposed model holds promise for applications in the development of solid-state and quantum radiation sources operating in the microwave and higher frequency ranges.
Citation
Vadym Pazynin, Asel Begimova, Nursaule Burambayeva, Kostyantyn Sirenko, Nataliya Yashina, and Wilhelm Keusgen, "Quasi-Monomode Resonator for Ka-Band Applications," Progress In Electromagnetics Research C, Vol. 146, 13-20, 2024.
doi:10.2528/PIERC24040304
References

1. Fouckhardt, Henning, Ann-Kathrin Kleinschmidt, Johannes Strassner, and Christoph Doering, "1D confocal broad area semiconductor lasers (confocal BALs) for fundamental transverse mode selection (TMS# 0)," Advances in OptoElectronics, Vol. 2019, Jun. 2019.

2. Duchiron, G., D. Cros, P. Guillon, M. Chaubet, and C. Zanchi, "Mode selection for a whispering gallery mode resonator," 1999 29th European Microwave Conference, Vol. 3, 44-46, Munich, Germany, 1999.

3. Di Monaco, O., W. Daniau, I. Lajoie, Y. Gruson, M. Chaubet, and V. Giordano, "Mode selection for a whispering gallery mode resonator," Electronics Letters, Vol. 32, No. 7, 669-670, 1996.

4. Levitskii, I. V. and V. P. Evtikhiev, "Mode selection control in microring resonators," Journal of Physics: Conference Series, Vol. 769, No. 1, 012055, 2016.

5. Pazynin, Vadym L., "Sparseness of natural oscillations spectrum for double-mirror open resonator using mode-selective scatterers on one of mirrors surface," Radioelectronics and Communications Systems, Vol. 64, No. 10, 525-534, 2021.

6. Raskhodchikov, A. V., S. A. Scherbak, N. V. Kryzhanovskaya, A. E. Zhukov, and A. A. Lipovskii, "Dielectric surrounding decimates eigenmodes of microdisk optical resonators," Journal of Physics: Conference Series, Vol. 1124, No. 5, 051031, 2018.

7. Ilchenko, S. G., R. A. Lymarenko, V. B. Taranenko, N. Kyvzas, and A. Belosludtsev, "Multilayer dielectric structure for mode selection of wide-aperture laser," 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), 1-4, Sozopol, Bulgaria, Sep. 2019.

8. Yang, Zhaohui H., James R. Leger, and Andrei V. Shchegrov, "Three-mirror resonator with aspheric feedback mirror for laser spatial mode selection and mode shaping," IEEE Journal of Quantum Electronics, Vol. 40, No. 9, 1258-1269, Sep. 2004.

9. Serkland, Darwin K., Haley M. So, Gregory M. Peake, Michael G. Wood, Alejandro J. Grine, Christopher P. Hains, Kent M. Geib, and Gordon A. Keeler, "Mode selection and tuning of single-frequency short-cavity VECSELs," Vertical-Cavity Surface-Emitting Lasers XXII, Vol. 10552, 18-28, San Francisco, USA, 2018.

10. Büttner, A., R. Kowarschik, and U. D. Zeitner, "Folded diffractive laser resonators with user-defined fundamental mode," Applied Physics B, Vol. 81, 601-606, 2005.

11. Ostroukh, O. P., R. A. Lymarenko, and V. B. Taranenko, "Model of wide-aperture laser with intracavity diffractive element," 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL), 188-191, Sozopol, Bulgaria, Sep. 2019.

12. Ginzburg, N. S., A. S. Sergeev, E. R. Kocharovskaya, A. M. Malkin, E. D. Egorova, and V. Yu. Zaslavsky, "Diffraction mode selection in planar Bragg resonators of optical and microwave wavelength ranges," Physics Letters A, Vol. 384, No. 10, 126219, Apr. 2020.

13. Ginzburg, Naum Samuilovich, A. S. Sergeev, Ekaterina Rudolfovna Kocharovskaya, Andrei Mikhailovich Malkin, E. D. Egorova, and V. Yu. Zaslavsky, "Diffraction-mode selection in heterolasers with planar Bragg structures," Semiconductors, Vol. 54, 1161-1165, Sep. 2020.

14. Zapevalov, V. E., S. N. Vlasov, E. V. Koposova, A. N. Kuftin, A. B. Paveliev, and N. A. Zavolsky, "Various types of echelette resonators for gyrotrons," EPJ Web of Conferences, Vol. 195, 01022, Nizhny Novgorod, Russia, Oct. 2018.

15. Shestopalov, Victor P., Smith-purcell Effect, Nova Science Publishers, 1998.

16. Sautbekov, Seil, Kostyantyn Sirenko, Yuriy Sirenko, and Anatoliy Yevdokymov, "Diffraction radiation effects: A theoretical and experimental study," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 73-93, Oct. 2015.

17. Sirenko, Yuriy, Seil S. Sautbekov, Nataliya Yashina, and Kostyantyn Sirenko, "Diffraction radiation generated by a density-modulated electron beam flying over the periodic boundary of the medium section. I. Analytical basis," Progress In Electromagnetics Research B, Vol. 91, 1-8, 2021.

18. Sirenko, Yuriy, Seil Sautbekov, Nataliya Yashina, and Kostyantyn Sirenko, "A new approach to formation and directed radiation of powerful short radio pulses," IEEE Transactions on Plasma Science, Vol. 50, No. 10, 3422-3433, 2022.

19. Yevdokymov, Anatoliy P. and V. V. Kryzhanovskiy, "Diffraction radiation antennas for SHF and EHF radiosystems," 2007 6th International Conference on Antenna Theory and Techniques, 59-64, Sevastopol, Ukraine, Sep. 2007.

20. Melezhik, Petro N., Y. Sidorenko, S. A. Provalov, S. D. Andrenko, and S. A. Shilo, "Planar antenna with diffraction radiation for radar complex of millimeter band," Radioelectronics and Communications Systems, Vol. 53, 233-240, 2010.

21. Shylo, Sergiy, Yuriy Sydorenko, Dana Wheeler, and Douglas Dundonald, "A W-band passive imaging system implemented with rotating diffraction antenna technology," Millimetre Wave and Terahertz Sensors and Technology VI, Vol. 8900, 36-45, 2013.

22. Sirenko, K. Yu, Yuriy Sirenko, and A. P. Yevdokymov, "Diffraction antennas. planar structures with controllable beam positioning," Telecommunications and Radio Engineering, Vol. 78, No. 10, 835-851, 2019.

23. Sirenko, Yuriy and A. P. Yevdokymov, "Diffraction antennas. linear structures on the basis of a ridged dielectric waveguide," Telecommunications and Radio Engineering, Vol. 77, No. 14, 1203-1229, 2018.

24. Sirenko, Yuriy, Seil Sautbekov, Merey Sautbekova, Nataliya Yashina, Nursaule Burambayeva, and Assel Begimova, "Axial-symmetric diffraction radiation antenna with a very narrow funnel-shaped directional diagram," Applied Sciences, Vol. 11, No. 21, 10381, Nov. 2021.

25. Sydorenko, Yuriy, Sergiy Provalov, Sergiy Shylo, and Dana Wheeler, "Compact MMW-band planar diffraction type antennas for various applications," American Journal of Electromagnetics and Applications, Vol. 8, No. 1, 18-27, Jun. 2020.
doi:10.11648/j.ajea.20200801.13

26. Perov, A., Y. Sirenko, and N. Yashina, "Explicit conditions for virtual boundaries in initial boundary value problems in the theory of wave scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 10, 1343-1371, 1999.

27. Sirenko, Yuriy and Lyudmyla Velychko, Electromagnetic Waves in Complex Systems, Springer, 2016.

28. Sirenko, Y., V. Pazynin, K. Sirenko, and N. Yashina, "Exact absorbing conditions for initial boundary value problems of computational electrodynamics. Review," Chapter 3 in A Closer Look at Boundary Value Problems, (ed. M. Avci), 43–124, Nova Science Publishers, 2020.

29. Sirenko, Kostyantyn, Vadim Pazynin, Yuriy K. Sirenko, and Hakan Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.

30. Pazynin, V. L., "Simulation of the characteristics of an active microwave power compressor," Telecommunications and Radio Engineering, Vol. 76, No. 12, 1033-1047, 2017.

31. Pazynin, V. L., S. S. Sautbekov, K. Y. Sirenko, Yuriy Sirenko, A. A. Vertiy, and N. P. Yashina, "Comparison of exact and approximate absorbing conditions for initial boundary value problems of the electromagnetic theory of gratings," Telecommunications and Radio Engineering, Vol. 77, No. 18, 1581-1595, 2018.

32. Sirenko, Kostyantyn, Meilin Liu, and Hakan Bagci, "Incorporation of exact boundary conditions into a discontinuous Galerkin finite element method for accurately solving 2D time-dependent Maxwell equations," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 472-477, Jan. 2013.

33. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.