Vol. 140
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-01-17
Modeling and Simulation of Photonic Crystal Sensor for Drinking Water Quality Monitoring
By
Progress In Electromagnetics Research C, Vol. 140, 85-91, 2024
Abstract
Photonics crystal sensors, sensitive to light, play a crucial role in discerning minute alterations in a material's refractive index, finding widespread application, such as in monitoring drinking water quality. Our objective is to fashion a sensor based on a 2D photonics crystal structure and scrutinize optical transformations induced by variations in the bacteria's refractive index as light traverses the sensor structure. Leveraging Rsoft's simulation capabilities, we assessed transmission spectra, observing shifts in the bacteria's refractive index and their consequential impact on the light signal's frequency and wavelength within the sensor structure. The simulations unequivocally demonstrate that fluctuations in the bacteria's refractive index significantly affect the light signal's frequency and wavelength. Consequently, the study underscores the efficacy of the Rsoft-designed optical sensor in discerning bacterial presence in contaminated water, achieving an average sensitivity of 834 nm/RIU. In conclusion, the study establishes the success of the optical sensor crafted with Rsoft software in detecting bacteria in polluted water. By monitoring optical alterations during light traversal, variations in the bacteria's refractive index are translated into discernible shifts in the light signal's frequency and wavelength, facilitating effective bacteria detection.
Citation
Farida Kebaili, Ahlam Harhouz, and Abdesselam Hocini, "Modeling and Simulation of Photonic Crystal Sensor for Drinking Water Quality Monitoring," Progress In Electromagnetics Research C, Vol. 140, 85-91, 2024.
doi:10.2528/PIERC23120502
References

1. Mathur, S., D. Singh, and R. Ranjan, "Genetic circuits in microbial biosensors for heavy metal detection in soil and water," Biochemical and Biophysical Research Communications, Vol. 652, 131-137, 2023.
doi:10.1016/j.bbrc.2023.02.031

2. Feng, C., J. Zhang, C. Bian, L. Li, R. Hu, H. Chang, F. Peng, X. Peng, and N. Zhong, "Solid–liquid-core optical fiber biosensor for highly sensitive and selective detection of 4-chlorophenol in water," Chinese Chemical Letters, Vol. 34, No. 12, 108457, 2023.
doi:10.1016/j.cclet.2023.108457

3. Chen, J., G. Shi, and C. Yan, "Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer," Science of The Total Environment, Vol. 872, 162279, 2023.
doi:10.1016/j.scitotenv.2023.162279

4. Wang, J., G. Zhan, X. Yang, D. Zheng, X. Li, L. Zhang, T. Huang, and X. Wang, "Rapid detection of nitrite based on nitrite-oxidizing bacteria biosensor and its application in surface water monitoring," Biosensors and Bioelectronics, Vol. 215, 114573, 2022.
doi:10.1016/j.bios.2022.114573

5. Zouache, T., A. Hocini, and X. Wang, "Cavity-coupled photonic crystal waveguide as highly sensitive platform for pressure sensing," Optik, Vol. 172, 97-106, 2018.
doi:10.1016/j.ijleo.2018.06.120

6. Nnachi, R. C., N. Sui, B. Ke, Z. Luo, N. Bhalla, D. He, and Z. Yang, "Biosensors for rapid detection of bacterial pathogens in water, food and environment," Environment International, Vol. 166, 107357, 2022.
doi:10.1016/j.envint.2022.107357

7. Kotsiri, Z., J. Vidic, and A. Vantarakis, "Applications of biosensors for bacteria and virus detection in food and water – A systematic review," Journal of Environmental Sciences, Vol. 111, 367-379, 2022.
doi:10.1016/j.jes.2021.04.009

8. Hocini, A., R. Moukhtari, D. Khedrouche, A. Kahlouche, and M. Zamani, "Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in silica matrix," Optics Communications, Vol. 384, 111-117, 2017.
doi:10.1016/j.optcom.2016.10.020

9. Li, J., M. Cui, J. Zhao, J. Wang, and X. Fang, "A self-amplifying plasmid based ultrasensitive biosensor for the detection of As (III) in water," Biosensors and Bioelectronics, Vol. 221, 114937, 2023.
doi:10.1016/j.bios.2022.114937

10. Achmad, H., M. M. Al-Hamdani, S. A. Ali, A. K. Kareem, M. E. Al-Gazally, A. A. Ramírez-Coronel, A. S. Altamimi, M. Abosaooda, Y. F. Mustafa, and S. H. J. Ali, "Recent advances of amino acid-based biosensors for the efficient food and water contamination detection in food samples and environmental resources: A technical and analytical overview towards advanced nanomaterials and biological receptor," Microchemical Journal, Vol. 189, 108552, 2023.
doi:10.1016/j.microc.2023.108552

11. Kahlouche, A., A. Hocini, and D. Khedrouche, "Band-gap properties of 2D photonic crystal made by silica matrix doped with magnetic nanoparticles," Journal of Computational Electronics, Vol. 13, 490-495, 2014.
doi:10.1007/s10825-014-0559-y

12. Hesari, N., A. Alum, M. Elzein, and M. Abbaszadegan, "A biosensor platform for rapid detection of E. coli in drinking water," Enzyme and Microbial Technology, Vol. 83, 22-28, 2016.

13. Kellner, K., J. Ettenauer, K. Zuser, T. Posnicek, and M. Brandl, "An automated, robotic biosensor for the electrochemical detection of E. coli in water," Procedia Engineering, Vol. 168, 594-597, 2016.
doi:10.1016/j.proeng.2016.11.222

14. Ettenauer, J., K. Zuser, K. Kellner, T. Posnicek, and M. Brandl, "Development of an automated biosensor for rapid detection and quantification of E. coli in water," Procedia Engineering, Vol. 120, 376-379, 2015.
doi:10.1016/j.proeng.2015.08.643

15. Rengaraj, S., Á. Cruz-Izquierdo, J. L. Scott, and M. Di Lorenzo, "Impedimetric paper-based biosensor for the detection of bacterial contamination in water," Sensors and Actuators B: Chemical, Vol. 265, 50-58, 2018.
doi:10.1016/j.snb.2018.03.020

16. Zhu, P., D. R. Shelton, J. S. Karns, A. Sundaram, S. Li, P. Amstutz, and C. Tang, "Detection of water-borne E. coli O157 using the integrating waveguide biosensor," Biosensors and Bioelectronics, Vol. 21, No. 4, 678-683, 2005.
doi:10.1016/j.bios.2005.01.005

17. Chouler, J., Á. Cruz-Izquierdo, S. Rengaraj, J. L. Scott, and M. Di Lorenzo, "A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water," Biosensors and Bioelectronics, Vol. 102, 49-56, 2018.
doi:10.1016/j.bios.2017.11.018

18. Song, X., Z. Fredj, Y. Zheng, H. Zhang, G. Rong, S. Bian, and M. Sawan, "Biosensors for waterborne virus detection: Challenges and strategies," Journal of Pharmaceutical Analysis, Vol. 13, No. 11, 1252-1268, 2023.
doi:10.1016/j.jpha.2023.08.020

19. Pebdeni, A. B., A. Roshani, E. Mirsadoughi, S. Behzadifar, and M. Hosseini, "Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water," Food Control, Vol. 135, 108822, May 2022.
doi:10.1016/j.foodcont.2022.108822

20. Gowda, Ranjith B., T. V. Vilas, G. D. Komal, et al., "Bacterial detection in contaminated water using a photonic crystal sensor," 2023 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES), Tumakuru, India, 2023.

21. Fallahi, Vahid, Zoheir Kordrostami, and Mehdi Hosseini, "A solution for detection of ethanol and methanol with overlapping refractive indexes based on photonic crystal ring resonator optical sensors," IEEE Sensors Journal, Vol. 23, No. 7, 6791-6798, Apr. 2023.
doi:10.1109/JSEN.2023.3249626

22. Harhouz, A. and A. Hocini, "Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 5, 659-667, 2015.
doi:10.1080/09205071.2015.1012597

23. Hocini, A. and A. Harhouz, "Modeling and analysis of the temperature sensitivity in two-dimensional photonic crystal microcavity," Journal of Nanophotonics, Vol. 10, No. 1, 016007, 2016.
doi:10.1117/1.JNP.10.016007

24. Fathollahi-Khalkhali, T. and R. Shiri, "An ultra-sensitive refractive index-based photonic crystal biosensor with the coupled cavity-waveguide structure," Indian Journal of Physics, Vol. 97, 4427-4437, 2023.
doi:10.1007/s12648-023-02772-2

25. Zadeh, Fatemeh Rahman, Hassan Kaatuzian, and Mohammad Danaie, "Hybrid photonic crystal cavity as a sensitive label-free biosensor," 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 2019.

26. Sharma, Varsha and Vijay Laxmi Kalyani, "Designing four channel nano cavities coupled photonic crystal based bio-sensor for detection in water bactria," 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), 84-88, Gurgaon, India, 2017.

27. Kerimani, Praveenkumar, Fleming Dackson Gudagunti, Preeta Sharan, and Srinivas Talabuttula, "Photonic crystal based nano scaled sensor for the detection of agents causing typhoid in water," 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2015.

28. Das, Atmabhu, Pratap Kumar Panigrahi, and Gopinath Palai, "Realization of silicon based optical sensor for investigating the quality of mines water: A proposal for environmental monitoring sensing device," 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT), Erode, India, 2023.

29. Liu, Yazhao and Huub W. M. Salemink, "Sensitive all-optical channel-drop sensor in photonic crystals," Journal of Lightwave Technology, Vol. 33, No. 17, 3672-3678, 2015.
doi:10.1109/JLT.2015.2450995

30. Enche Ab Rahim, S. A., N. F. N. Zulkifli, M. F. Sapuri, N. E. Abd Rashid, Z. Ismail Khan, and N. A. Zakaria, "Sensitivity Enhancement of CSRR Sensor Using Interdigital Structure in Detecting Ammoniacal Nitrogen for Water Quality Applications," 2022 IEEE Symposium on Wireless Technology & Applications (ISWTA), Kuala Lumpur, Malaysia, 2022.

31. Jokar, M. H., A. Naraghi, M. Seifouri, and S.Olyaee, "Design of bio-alcohol sensor based on waveguide-coupled photonic crystal cavity," Results in Optics, Vol. 13, 100563, 2023.
doi:10.1016/j.rio.2023.100563