Vol. 140
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-01-12
Antenna Sensor Based on an Inter-Digital Capacitor Shape EBG Structure for Liquid Dielectric Measurement
By
Progress In Electromagnetics Research C, Vol. 140, 65-73, 2024
Abstract
In this paper, an antenna sensor based on an electromagnetic bandgap (EBG) structure is proposed to measure the complex permittivity of liquid under test (LUT). The sensor consists of two parts: a detection antenna and an EBG structure. The detection antenna uses a semicircular arc defective ground structure to improve the quality factor (Q-factor). Simultaneously, the EBG structure can be equivalent to a narrow-band bandpass filter, so that the electromagnetic wave can only propagate in a very narrow frequency band. It can further improve the Q-factor of the antenna and realize the precise positioning of the resonance frequency point. The complex permittivity of the LUT can be extracted by measuring the resonant frequency shift and the amount of variation in the Q-factor of the antenna. The test results show that the sensor can detect dielectric values covering the range of 1-25, and the average sensitivity is 2.342%. It combines the advantages of high sensitivity and wide detection range.
Citation
Bo Yin, and Juntao Yin, "Antenna Sensor Based on an Inter-Digital Capacitor Shape EBG Structure for Liquid Dielectric Measurement," Progress In Electromagnetics Research C, Vol. 140, 65-73, 2024.
doi:10.2528/PIERC23112402
References

1. Karuppuswami, Saranraj, Leann Lerie Matta, Evangelyn C. Alocilja, and Premjeet Chahal, "A wireless RFID compatible sensor tag using gold nanoparticle markers for pathogen detection in the liquid food supply chain," IEEE Sensors Letters, Vol. 2, No. 2, 1-4, Jun. 2018.
doi:10.1109/LSENS.2018.2822305

2. Nitika, Jaswinder Kaur, and Rajesh Khanna, "Novel monkey-wrench-shaped microstrip patch sensor for food evaluation and analysis," Journal of The Science of Food and Agriculture, Vol. 102, No. 4, 1443-1456, Mar. 2022.
doi:10.1002/jsfa.11478

3. Sung, Pei-Fang, Yi-Ling Hsieh, Kristen Angonese, Don Dunn, Ray J. King, Rachel Machbitz, Andrew Christianson, William J. Chappell, Lynne S. Taylor, and Michael T. Harris, "Complex dielectric properties of microcrystalline cellulose, anhydrous lactose, and α-lactose monohydrate powders using a microwave-based open-reflection resonator sensor," Journal of Pharmaceutical Sciences, Vol. 100, No. 7, 2920-2934, Jul. 2011.
doi:10.1002/jps.22516

4. Kale, Vivek, Sweta Rath, Chetan Chavan, Tejashree Bhave, and S. N. Kale, "Functionalised biosensor for diagnostics of dengue NS1 antigen: An integrated approach towards device development," 2022 IEEE 7th International Conference For Convergence in Technology (I2CT), 1-5, 2022.

5. Wang, Peng-Jui, Yu-Hao Pang, Sheng-Yu Huang, Jun-Tung Fang, Sui-Yuan Chang, Shin-Ru Shih, Tian-Wei Huang, Yi-Jan Chen, and Chi-Kuang Sun, "Microwave resonant absorption of SARS-CoV-2 viruses," Scientific Reports, Vol. 12, No. 1, 12596, Jul. 2022.
doi:10.1038/s41598-022-16845-5

6. Rossignol, Jerome, Amal Harrabi, Didier Stuerga, Pierre Pribetich, Guillaume Bailly, and Therese Leblois, "Critical influence of dielectric sensitive material and manufactured process in microwave gas-sensing: Application of ammonia detection with an interdigital sensor," Acs Omega, Vol. 5, No. 20, 11507-11514, May 2020.
doi:10.1021/acsomega.0c00596

7. Chen, Yi, Changzhou Hua, and Zhongxiang Shen, "Circularly polarized UHF RFID tag antenna for wireless sensing of complex permittivity of liquids," IEEE Sensors Journal, Vol. 21, No. 23, 26746-26754, Dec. 2021.
doi:10.1109/JSEN.2021.3121714

8. Loutchanwoot, Panida and Supakorn Harnsoongnoen, "Microwave microfluidic sensor for detection of high equol concentrations in aqueous solution," IEEE Transactions on Biomedical Circuits and Systems, Vol. 16, No. 2, 244-251, Apr. 2022.
doi:10.1109/TBCAS.2022.3153459

9. Santra, Mrityunjay and K. U. Limaye, "Estimation of complex permittivity of arbitrary shape and size dielectric samples using cavity measurement technique at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 2, 718-722, 2005.

10. Wang, Yun-Rui and Hong-Gang Hao, "Design of a microstrip sensor based on a CSRR-derived structure for measuring the permittivity and permeability of materials," Progress In Electromagnetics Research M, Vol. 111, 235-246, 2022.
doi:10.2528/PIERM22052501

11. Hegazy, Ahmed M., Mostafa Alizadeh, Amr Samir, Mohamed Basha, and Safieddin Safavi-Naeini, "Remote material characterization with complex baseband FMCW radar sensors," Progress In Electromagnetics Research, Vol. 177, 107-126, 2023.
doi:10.2528/PIER23032403

12. Fenner, Raenita A. and Mili Shah, "A comprehensive error analysis of free-space techniques for extracting the permeability and permittivity of materials using reflection-only measurements," Progress In Electromagnetics Research M, Vol. 103, 151-159, 2021.

13. Sagar, Paresh R. and Piyush N. Patel, "Metamaterial integrated rectangular waveguide with EM-wave localization for dielectric & moisture estimation of soil," IEEE Sensors Journal, Vol. 21, No. 20, 22661-22669, 2021.

14. Riddle, B., J. Baker-Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 727-733, Mar. 2003.
doi:10.1109/TMTT.2003.808730

15. Alahnomi, Rammah Ali, Zahriladha Zakaria, Zulkalnain Mohd Yussof, Ayman Abdulhadi Althuwayb, Ammar Alhegazi, Hussein Alsariera, and Norhanani Abd Rahman, "Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions," Sensors, Vol. 21, No. 7, 2267, 2021.
doi:10.3390/s21072267

16. Haq, Tanveerul, Cunjun Ruan, Xingyun Zhang, Shahid Ullah, Ayesha Kosar Fahad, and Wenlong He, "Extremely sensitive microwave sensor for evaluation of dielectric characteristics of low-permittivity materials," Sensors, Vol. 20, No. 7, 1916, Apr. 2020.
doi:10.3390/s20071916

17. Alam, Syah, Zahriladha Zakaria, Indra Surjati, Noor Azwan Shairi, Mudrik Alaydrus, and Teguh Firmansyah, "Dual-band independent permittivity sensor using single-port with a pair of U-shaped structures for solid material detection," IEEE Sensors Journal, Vol. 22, No. 16, 16111-16119, Aug. 2022.
doi:10.1109/JSEN.2022.3191345

18. Yeo, Junho and Jong-Ig Lee, "High-sensitivity slot-loaded microstrip patch antenna for sensing microliter-volume liquid chemicals with high relative permittivity and high loss tangent," Sensors, Vol. 22, No. 24, 9748, 2022.
doi:10.3390/s22249748

19. Liu, Changjun and Fan Tong, "An SIW resonator sensor for liquid permittivity measurements at C band," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 11, 751-753, Nov. 2015.
doi:10.1109/LMWC.2015.2479851

20. Seo, Yunsik, Muhammad Usman Memon, and Sungjoon Lim, "Microfluidic eighth-mode substrate-integrated-waveguide antenna for compact ethanol chemical sensor application," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3218-3222, Jul. 2016.
doi:10.1109/TAP.2016.2559581

21. Jun, Sung Yun, Benito Sanz Izquierdo, and Edward A. Parker, "Liquid sensor/detector using an EBG structure," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3366-3373, May 2019.
doi:10.1109/TAP.2019.2902663

22. Arif, Ali, Amna Zubair, Kashif Riaz, Muhammad Qasim Mehmood, and Muhammad Zubair, "A novel cesaro fractal EBG-based sensing platform for dielectric characterization of liquids," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2887-2895, May 2021.
doi:10.1109/TAP.2020.3028201

23. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, Oct. 2003.
doi:10.1109/TAP.2003.817559

24. Gregory, Andrew P. and R. N. Clarke, "Tables of the complex permittivity of dielectric reference liquids at frequencies up to 5 GHz," National Physical Laboratory Report, 2012.

25. Njogu, Peter M., Benito Sanz-Izquierdo, and Edward A. Parker, "A liquid sensor based on frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 631-638, Jan. 2023.
doi:10.1109/TAP.2022.3219540

26. Aquino, Anyela, Carlos G. Juan, Benjamin Potelon, and C. Quendo, "Dielectric permittivity sensor based on planar open-loop resonator," IEEE Sensors Letters, Vol. 5, No. 3, 1-4, 2021.

27. Shi, Qi, Xiu-Wei Xuan, Hong-Kuai Nie, Zhi-Yong Wang, and Wei Wang, "Antenna sensor based on AMC array for contactless detection of water and ethanol in oil," IEEE Sensors Journal, Vol. 21, No. 19, 21503-21510, 2021.