Vol. 140
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-01-08
NGD Bandpass Type Characterization of Circular Curved Coupled-Line
By
Progress In Electromagnetics Research C, Vol. 140, 21-30, 2024
Abstract
The present study examines the negative group delay (NGD) behavior of a circular curved (CC) coupled-line (CL) microstrip circuit with a bandpass (BP) characteristic. The novel CC CL-based circuit is derived from the curved li-topology which demonstrates BP-NGD functionality. The basic theoretical approach enabling the BP-NGD analysis is introduced. The BP-NGD function main properties related to NGD center frequency, NGD value, and NGD bandwidth are defined. Despite the progressive NGD research work, it was wondered how the RF printed circuit board trace geometrical parameters such as curvature radius and angle change the microwave communication parameters. To verify the BP-NGD concept feasibility, different microstrip prototypes are designed, simulated, fabricated, and tested as the proof of concept (POC). Thus, a developed empirical study of CC microstrip structures corroborating well-correlated simulations and experimental results is examined. Moreover, deep sensitivity analyses for geometrical design parameters were performed using commercial tool full-wave simulations. The obtained results provide insights into the effects of CC-structure inter-space and curvature angles on the inherent BP-NGD parameters. The proposed NGD circuit is potentially useful in the future in RF and microwave engineering for signal delay correction. Additionally, it helps in understanding the characteristics of microstrip PCB traces that are important for optimizing signal integrity (SI), power integrity (PI), and electromagnetic compatibility (EMC).
Citation
Xirui Wang, Fayu Wan, Vladimir Mordachev, Eugene Sinkevich, Samuel Ngoho, Nour Mohammad Murad, and Blaise Ravelo, "NGD Bandpass Type Characterization of Circular Curved Coupled-Line," Progress In Electromagnetics Research C, Vol. 140, 21-30, 2024.
doi:10.2528/PIERC23111304
References

1. Tun, Leaw Pang and Lim Chee Peng, "Challenges in high density PCB with 0.40 mm pitch BGA --- from design, fabrication & assembly perspective," 2009 1st Asia Symposium on Quality Electronic Design, 44-48, Kuala Lumpur, Malaysia, Jul. 15-16 2009.

2. Rao, G. and N Rao, "A web based course on designing high density interconnect PCBs for manufacturability," 50th Electronic Components & Technology Conference --- 2000 Proceedings, 1285-1288, Las Vegas, Nv, May 21-24 2000.
doi:10.1109/ECTC.2000.853340

3. Frisk, L., S. Lahokallio, and J. Kiilunen, "Comparison of microvia hdi pcbs with ACF interconnections in accelerated life testing," 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, 1-6, 2017.

4. Sung, M, W. Ryu, H. Kim, J. Kim, and J. Kim, "An efficient crosstalk parameter extraction method for high-speed interconnection lines," IEEE Transactions on Advanced Packaging, Vol. 23, No. 2, 148-155, May 2000.
doi:10.1109/6040.846625

5. Kim, Dongchul and Yungseon Eo, "S," IEEE Transactions on Advanced Packaging, Vol. 32, No. 1, 152-163, Feb. 2009.
doi:10.1109/TADVP.2008.2004465

6. Fan, Jun, Xiaoning Ye, Jingook Kim, Bruce Archambeault, and Antonio Orlandi, "Signal integrity design for high-speed digital circuits: progress and directions," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 392-400, May 2010.
doi:10.1109/TEMC.2010.2045381

7. Kim, Joungho and Erping Li, "Special issue on PCB level signal integrity, power integrity, and EMC," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 246-247, May 2010.
doi:10.1109/TEMC.2010.2049073

8. Schuster, Christian and Wolfgang Fichtner, "Parasitic modes on printed circuit boards and their effects on EMC and signal integrity," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, 416-425, 2001.

9. Archambeault, Bruce, Colin Brench, and Sam Connor, "Review of printed-circuit-board level EMI/EMC issues and tools," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 455-461, May 2010.
doi:10.1109/TEMC.2010.2044182

10. Swirbel, T., A. Naujoks, and M. Watkins, "Electrical design and simulation of high density printed circuit boards," IEEE Transactions on Advanced Packaging, Vol. 22, No. 3, 416-423, Aug. 1999.
doi:10.1109/6040.784495

11. Buckwalter, James F., "Predicting microwave digital signal integrity," IEEE Transactions on Advanced Packaging, Vol. 32, No. 2, 280-289, May 2009.
doi:10.1109/TADVP.2008.2011560

12. Wan, Fayu, Taochen Gu, Sebastien Lallechere, Jamel Nebhen, and Blaise Ravelo, "NGD investigation on medusa-shape interconnect structure," International Journal of RF and Microwave Computer-aided Engineering, Vol. 31, No. 10, Oct. 2021.
doi:10.1002/mmce.22846

13. Ansys SI, 4 pages, [Online] Cited 2021-5-10, available at: https://www.ansys.com/products/electronics/option-ansys-si.

14. Ansys CST Studio Suite SI and PI, 1 page, [Online] Cited 2021-6-15, available at: https://www.3ds.com/productsservices/ simulia/training/course-descriptions/cst-studio-suite-edasi-pi/.

15. Ruehli, Albert E and Andreas C. Cangellaris, "Progress in the methodologies for the electrical modeling of interconnects and electronic packages," Proceedings of the IEEE, Vol. 89, No. 5, 740-771, 2001.

16. Khan, Zulfiqar A., "A novel transmission line structure for high-speed high-density copper interconnects," IEEE Transactions on Components Packaging and Manufacturing Technology, Vol. 6, No. 7, 1079-1088, Jul. 2016.
doi:10.1109/TCPMT.2016.2570207

17. Branch, K. M. C., J. Morsey, A. C. Cangellaris, and A. E. Ruehli, "Physically consistent transmission line models for high-speed interconnects in lossy dielectrics," IEEE Transactions on Advanced Packaging, Vol. 25, No. 2, 129-135, May 2002.
doi:10.1109/TADVP.2002.803309

18. Ravelo, B., "Delay modeling of high-speed distributed interconnect for the signal integrity prediction," European Physical Journal-applied Physics, Vol. 57, No. 3, Feb. 2012.
doi:10.1051/epjap/2012110374

19. Kahng, Andrew B. and Sudhakar Muddu, "An analytical delay model for RLC interconnects," IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, Vol. 16, No. 12, 1507-1514, 1997.

20. Venkatesan, R., J. A. Davis, and J. D. Meindl, "Compact distributed rlc interconnect models --- part IV: unified models for time delay, crosstalk, and repeater insertion," IEEE Transactions on Electron Devices, Vol. 50, No. 4, 1094-1102, Apr. 2003.
doi:10.1109/TED.2003.812509

21. Roy, Sourajeet and Anestis Dounavis, "Efficient delay and crosstalk modeling of RLC interconnects using delay algebraic equations," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 19, No. 2, 342-346, Feb. 2011.
doi:10.1109/TVLSI.2009.2032288

22. Wang, S. L. and T. W. Chang, "Delay modeling for buffered RLY/RLC trees," 2005 IEEE VLSI-TSA International Symposium on Vlsi Design, Automation & Test (VLSI-TSA-DAT), Proceedings of Technical Papers, 237-240, Automation and Test, Hsinchu, Apr. 27-29, 2005.
doi:10.1109/VDAT.2005.1500064

23. Choi, Minsoo, Jae-Yoon Sim, Hong-June Park, and Byungsub Kim, "An approximate closed-form transfer function model for diverse differential interconnects," IEEE Transactions on Circuits and Systems I-regular Papers, Vol. 62, No. 5, 1335-1344, May 2015.
doi:10.1109/TCSI.2015.2407435

24. Eudes, Thomas, Blaise Ravelo, and Anne Louis, "Experimental validations of a simple pcb interconnect model for high-rate signal integrity," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 2, 397-404, Apr. 2012.
doi:10.1109/TEMC.2011.2165216

25. Maza, Manuel Salim and Monico Linares Aranda, "Analysis of clock distribution networks in the presence of crosstalk and groundbounce," ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (CAT. No. 01ex483), Vol. 2, 773-776, 2001.

26. Ngoho, Samuel, Y. C. Mombo Boussougou, Syed S. Yazdani, Yuandan Dong, Nour M. Murad, and Lalléchère, "Design and modelling of ladder-shape topology generating bandpass NGD function," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1813-1821, 2020.
doi:10.1109/TEMC.2019.2936266

27. Wan, Fayu, Lili Wu, Blaise Ravelo, and Junxiang Ge, "Analysis of interconnect line coupled with a radial-stub terminated negative group delay circuit," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 1813-1821, Oct. 2020.
doi:10.1109/TEMC.2019.2936266

28. Boussougou, Yves C. Mombo, Eric J. R. Sambatra, Antonio Jaomiary, Lucius Ramifidisoa, Nour M Murad, Jean-Paterne Kouadio, Samuel Ngoho, Frank E. Sahoa, Sahbi Baccar, and Rivo Randriatsiferana, "Bandpass-type NDG design engineering and uncertainty analysis of RLC-series resonator based passive cell," Progress In Electromagnetics Research C, Vol. 121, 65-82, 2022.

29. Das, Ranjan, Qingfeng Zhang, and Haiwen Liu, "Lossy coupling matrix synthesis approach for the realization of negative group delay response," IEEE Access, Vol. 6, 1916-1926, 2018.
doi:10.1109/ACCESS.2017.2780888

30. Wang, Zhongbao, Yuan Cao, Te Shao, Shaojun Fang, and Yuanan Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 4, 290-292, Apr. 2018.
doi:10.1109/LMWC.2018.2811254

31. Xiao, Jian-Kang, Qiu-Fen Wang, and Jian-Guo Ma, "Negative group delay circuits and applications: Feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16-32, 2021.

32. Ravelo, Blaise, "Distributed NDG active circuit for RF-microwave communication," AEU-international Journal of Electronics and Communications, Vol. 68, No. 4, 282-290, 2014.
doi:10.1016/j.aeue.2013.09.003

33. Shao, Te, Zhongbao Wang, Shaojun Fang, Hongmei Liu, and Zhi Ning Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," AEU-international Journal of Electronics and Communications, Vol. 123, Aug. 2020.
doi:10.1016/j.aeue.2020.153297

34. Ravelo, Blaise, Fayu Wan, Jamel Nebhen, Wenceslas Rahajandraibe, and Sebastien Lallechere, "Resonance effect reduction with bandpass negative group delay fully passive function," IEEE Transactions on Circuits and Systems Ii-express Briefs, Vol. 68, No. 7, 2364-2368, Jul. 2021.
doi:10.1109/TCSII.2021.3059813

35. Ravelo, Blaise, Sebastien Lallechere, Wenceslas Rahajandraibe, and Fayu Wan, "Electromagnetic cavity resonance equalization with bandpass negative group delay," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 4, 1248-1257, Aug. 2021.
doi:10.1109/TEMC.2021.3051100

36. Ravelo, B., S. Lallechere, A. Thakur, A. Saini, and P. Thakur, "Theory and circuit modeling of baseband and modulated signal delay compensations with low- and band-pass NDG effects," AEU-international Journal of Electronics and Communications, Vol. 70, No. 9, 1122-1127, 2016.
doi:10.1016/j.aeue.2016.05.009

37. Gu, Taochen, Xiaoyu Huang, Fayu Wan, Blaise Ravelo, and Qizheng Ji, "Coupled-line curvature angle effect on bandpass negative group delay characteristics," 2022 Asia-pacific International Symposium on Electromagnetic Compatibility (APEMC), 458-461, 2022.

38. Ravelo, Blaise, Lili Wu, Fayu Wan, Wenceslas Rahajandraibe, and Nour Mohammad Murad, "Negative group delay theory on li topology," IEEE Access, Vol. 8, 47596-47606, 2020.
doi:10.1109/ACCESS.2020.2979453