Vol. 141
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-02-14
Tunable Filters Based on Fano Resonance Using Asymmetric Moving Resonators in a Single Loop System
By
Progress In Electromagnetics Research C, Vol. 141, 143-150, 2024
Abstract
We report a novel characteristic of the phenomenon of Fano resonance obtained by the interaction of incident electromagnetic waves and waveguides system formed of loop and resonators. The Green Function Method (GFM) is employed to calculate the transmittance of the incoming electromagnetic waves. Our proposed system achieve a selecting and filtering device either by total transmission or by total reflection with a very high performance. The proposed structure contains four segments of the same lengths, and asymmetric resonators (N and N' resonators) are moving in the structure. Through parameters optimization, we show that the system creates Fano resonances, which are sensitive to the variations of the segment lengths, the resonator lengths, the positions of the resonators and the physical properties of the system components. Then, the proposed system is able to filter at least two resonance modes with different frequencies. This system has potential applications in the field of microwave communication antennas.
Citation
Mimoun El-Aouni, Youssef Ben-Ali, Ilyass El Kadmiri, Younes Errouas, Abdelaziz Ouariach, and Driss Bria, "Tunable Filters Based on Fano Resonance Using Asymmetric Moving Resonators in a Single Loop System," Progress In Electromagnetics Research C, Vol. 141, 143-150, 2024.
doi:10.2528/PIERC23111104
References

1. Liu, Dajian, Hongnan Xu, Ying Tan, Yaocheng Shi, and Daoxin Dai, "Silicon photonic filters," Microwave and Optical Technology Letters, Vol. 63, No. 9, 2252-2268, Sep. 2021.
doi:10.1002/mop.32509

2. Khan, Yousuf, Atiq Ur Rehman, Bibi A. Batool, Mahain Noor, Muhammad A. Butt, Nikolay L. Kazanskiy, and Svetlana N. Khonina, "Fabrication and investigation of spectral properties of a dielectric slab waveguide photonic crystal based fano-filter," Crystals, Vol. 12, No. 2, 226, 2022.

3. Capmany, J., B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," Journal of Lightwave Technology, Vol. 24, No. 1, 201-229, Jan. 2006.
doi:10.1109/JLT.2005.860478

4. Liu, Yang, Amol Choudhary, David Marpaung, and Benjamin J. Eggleton, "Integrated microwave photonic filters," Advances in Optics and Photonics, Vol. 12, No. 2, 485-555, Jun. 2020.
doi:10.1364/AOP.378686

5. El-Aouni, Mimoun, Youssef Ben-Ali, Ilyass El Kadmiri, and Driss Bria, "Electromagnetically induced transparency and fano resonances base on coaxial photonic waveguide made up of asymmetric loop and resonators," Key Engineering Materials, Vol. 927, 178-188, 2022.

6. Badri, S. Hadi, Sanam SaeidNahaei, and Jong Su Kim, "Hybrid plasmonic slot waveguide with a metallic grating for on-chip biosensing applications," Applied Optics, Vol. 60, No. 25, 7828-7833, Sep. 2021.
doi:10.1364/AO.434927

7. Badri, S. Hadi, Hadi Soofi, and Sanam SaeidNahaei, "Thermally reconfigurable extraordinary terahertz transmission using vanadium dioxide," Journal of the Optical Society of America B, Vol. 39, No. 6, 1614-1621, Jun. 2022.
doi:10.1364/JOSAB.459639

8. Monticone, Francesco and Andrea Alù, "Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies," Proceedings of the IEEE, Vol. 103, No. 5, 793-821, May 2015.
doi:10.1109/JPROC.2015.2399419

9. Woolard, D. L., R. Brown, M. Pepper, and M. Kemp, "Terahertz frequency sensing and imaging: A time of reckoning future applications," Proceedings of the IEEE, Vol. 93, No. 10, 1722-1743, Oct. 2005.
doi:10.1109/JPROC.2005.853539

10. Sirci, Stefano, Jorge D. Martínez, Joaquín Vague, and Vicente E. Boria, "Substrate integrated waveguide diplexer based on circular triplet combline filters," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 7, 430-432, Jul. 2015.
doi:10.1109/LMWC.2015.2427516

11. Wiart, Joe, Radio-Frequency Human Exposure Assessment: From Deterministic to Stochastic Methods, John Wiley & Sons, 2016.
doi:10.1002/9781119285137

12. Ben-Ali, Y., Z. Tahri, F. Falyouni, and D. Bria, "Study about a filter using a resonator defect in a one-dimensional photonic comb containing a left-hand material," Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, 146-156, 2018.

13. El-Aouni, Mimoun, Youssef Ben-Ali, Ilyass El Kadmiri, and Driss Bria, "One-dimensional photonic serial asymmetric loops structure containing three defects," Defect and Diffusion Forum, Vol. 418, 25-37, 2022.

14. Ben-Ali, Y., A. Ghadban, Z. Tahri, K. Ghoumid, and D. Bria, "Accordable filters by defect modes in single and double negative star waveguides grafted dedicated to electromagnetic communications applications," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 4, 539-558, 2020.

15. Ben-Ali, Youssef, Ilyass El Kadmiri, Amina Ghadban, Kamal Ghoumid, Abdelfattah Mazari, and Driss Bria, "Two-channel demultiplexer based on 1D photonic star waveguides using defect resonators modes," Progress In Electromagnetics Research B, Vol. 93, 131-149, 2021.
doi:10.2528/PIERB21061203

16. Ben-Ali, Youssef, Ilyas El Kadmiri, Zakaria Tahri, and Driss Bria, "High quality factor microwave multichannel filter based on multi-defectives resonators inserted in periodic star waveguides structure," Progress In Electromagnetics Research C, Vol. 104, 253-268, 2020.

17. Errouas, Younes, Ilyass El kadmiri, Youssef Ben-Ali, and Driss Bria, "Electromagnetic filtering and guiding of three frequencies by the presence of defects in one-dimensional photonic star waveguides structure," Materials Today: Proceedings, Vol. 45, 7734-7741, 2021.

18. El-Aouni, M., Y. Ben-Ali, I. El Kadmiri, Z. Tahri, and D. Bria, "Electromagnetic multi-frequencies filtering by a defective asymmetric photonic serial loops structure," Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems, 195-202, Springer, Singapore, 2021.

19. Limonov, Mikhail F., Mikhail V. Rybin, Alexander N. Poddubny, and Yuri S. Kivshar, "Fano resonances in photonics," Nature Photonics, Vol. 11, 543-554, 2017.

20. Paul, Sushmita and Mina Ray, "Simultaneous switching at multiple wavelengths using plasmon induced transparency and Fano resonance," IEEE Photonics Technology Letters, Vol. 29, No. 9, 739-742, 2017.

21. Limonov, Mikhail F., "Fano resonance for applications," Advances in Optics and Photonics, Vol. 13, No. 3, 703-771, Sep. 2021.
doi:10.1364/AOP.420731

22. Fan, Huibo, Hongwei Fan, and Huili Fan, "Multiple fano resonance refractive index sensor based on a plasmonic metal-insulator-metal based taiji resonator," Journal of the Optical Society of America B, Vol. 39, No. 1, 32-39, Jan. 2022.
doi:10.1364/JOSAB.441882

23. Nguyen, Van An, Quang Minh Ngo, and Khai Quang Le, "Efficient color filters based on Fano-like guided-mode resonances in photonic crystal slabs," IEEE Photonics Journal, Vol. 10, No. 2, 2018.
doi:10.1109/JPHOT.2018.2796566

24. Cao, Guangtao, Shaohua Dong, Lei-Ming Zhou, Qing Zhang, Yan Deng, Cong Wang, Han Zhang, Yang Chen, Cheng-Wei Qiu, and Xinke Liu, "Fano resonance in artificial photonic molecules," Advanced Optical Materials, Vol. 8, No. 10, 1902153, May 2020.
doi:10.1002/adom.201902153

25. Caselli, Niccolo, Francesca Intonti, Federico La China, Francesco Biccari, Francesco Riboli, Annamaria Gerardino, Lianhe Li, Edmund H. Linfield, Francesco Pagliano, Andrea Fiore, and Massimo Gurioli, "Generalized Fano lineshapes reveal exceptional points in photonic molecules," Nature Communications, Vol. 9, Jan. 2018.
doi:10.1038/s41467-018-02855-3

26. Limonov, Mikhail F., "Fano resonance for applications," Advances in Optics and Photonics, Vol. 13, No. 3, 703-771, Sep. 2021.
doi:10.1364/AOP.420731

27. Mouadili, A., E. H. El Boudouti, A. Soltani, A. Talbi, A. Akjouj, and B. Djafari-Rouhani, "Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits," Journal of Applied Physics, Vol. 113, No. 16, 164101, Apr. 2013.
doi:10.1063/1.4802695

28. Johansen, Elmer L., "Millimeter-wave radar," Active Electro-Optical Systems, Vol. 5, 1993.

29. Liu, Wen-Chung, "A coplanar waveguide-fed folded-slot monopole antenna for 5.8 GHz radio frequency identification application," Microwave and Optical Technology Letters, Vol. 49, No. 1, 71-74, Jan. 2007.
doi:10.1002/mop.22051

30. Helou, Walid, Marc Goniche, Julien Hillairet, Frantigek Zacek, Joelle Achard, Jiri Adamek, Ondrej Bogar, Patrick Mollard, Jean-Yves Pascal, Serge Poli, David Sestak, Robert Volpe, and Jarornir Zajac, "Radio-frequency design of a lower hybrid slotted waveguide antenna," Fusion Engineering and Design, Vol. 123, 223-227, Nov. 2017.
doi:10.1016/j.fusengdes.2017.04.011

31. Dimitriadis, Alexandros I., Tomislav Debogovic, Mirko Favre, Mathieu Billod, Luca Barloggio, Jean-Philippe Ansermet, and Emile De Rijk, "Polymer-based additive manufacturing of high-performance waveguide and antenna components," Proceedings of the IEEE, Vol. 105, No. 4, 668-676, Apr. 2017.
doi:10.1109/JPROC.2016.2629511

32. Dobrzynski, L., "Interface response theory of continuous composite-materials," Surface Science, Vol. 180, No. 2-3, 489-504, Feb. 1987.
doi:10.1016/0039-6028(87)90222-6

33. El Boudouti, E. H., N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, A. Mir, J. O. Vasseur, L. Dobrzynski, and J. Zemmouri, "Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures," Journal of Applied Physics, Vol. 95, No. 3, 1102-1113, Feb. 2004.
doi:10.1063/1.1633983