Vol. 140
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-01-02
Flux Weakening Control and Experimental Verification of Hybrid Excitation Field Modulation Synchronous Machine for Direct Drive Propulsion
By
Progress In Electromagnetics Research C, Vol. 140, 1-9, 2024
Abstract
With combining the advantages of the hybrid excited machine and field modulation machine, hybrid excitation field modulation machine (HEFMM) exhibits obvious merits of controllable flux operation and independent flux distributon paths. A total copper loss minimization model is established to determine the optimal ratios of field current, d-axis and q-axis currents in low speed region. In high speed operating region, one flux weakening fuzzy control strategy combining with particle swarm optimization (PSO) algorithm for HEFMM was proposed, which improves the dynamic characteristic and decrease the harmful influence of parameters variation during the operation region of HEFMM. The correctness and effectiveness of the proposed flux weakening fuzzy control strategy were verified by the simulation data and experimental results, which demonstrated that the this current optimization method based on PSO algorithm can effectively reduce the total copper loss of the machine by 22%, the range of speed regulation with higher efficiency are ontained.
Citation
Jiming Luo, Yang Zhang, Enzhao Lu, Quanzhen Huang, Mingming Huang, and Duane Decker, "Flux Weakening Control and Experimental Verification of Hybrid Excitation Field Modulation Synchronous Machine for Direct Drive Propulsion," Progress In Electromagnetics Research C, Vol. 140, 1-9, 2024.
doi:10.2528/PIERC23103105
References

1. Yang, Chengfeng, Heyun Lin, Han Guo, and Z. Q. Zhu, "Design and analysis of a novel hybrid excitation synchronous machine with asymmetrically stagger permanent magnet," IEEE Transactions on Magnetics, Vol. 44, No. 11, 4353-4356, Nov. 2008.
doi:10.1109/TMAG.2008.2001325

2. Zhang, Yang, Jiming Luo, Mingming Huang, Quanzhen Huang, and Duane Decker, "Design and experimental verification of variable flux permanent magnet vernier machine using time-stepping finite element method," Progress In Electromagnetics Research C, Vol. 129, 115-126, 2023.

3. Zhang, Yang, Quanzhen Huang, Mingming Huang, Duane Decker, and Yuhao Qing, "Design and experimental verification of adaptive speed region control for hybrid excitation claw-pole synchronous machine," Progress In Electromagnetics Research C, Vol. 88, 195-205, 2018.

4. Cai, Shun, Zi-Qiang Zhu, C. Wang, Jean-Claude Mipo, and Sophie Personnaz, "A novel fractional slot non-overlapping winding hybrid excited machine with consequent-pole pm rotor," IEEE Transactions on Energy Conversion, Vol. 35, No. 3, 1628-1637, Sep. 2020.
doi:10.1109/TEC.2020.2978978

5. Fan, Ying, Yutong Lei, and Xu Wang, "An improved robust deadbeat predictive current control for the consequent-pole hybrid excitation motor," IEEE Transactions on Energy Conversion, Vol. 38, No. 2, 1219-1230, Jun. 2023.
doi:10.1109/TEC.2022.3233861

6. Wang, Sigao, Shuangxia Niu, and Weinong Fu, "Comparative study of relieving-dc-saturation hybrid excited vernier machine with different rotor pole designs for wind power generation," IEEE Access, Vol. 8, 198900-198911, Sep. 2020.
doi:10.1109/ACCESS.2020.3023193

7. Zhang, Zhuoran, Ye Liu, Bo Tian, and Wenjia Wang, "Investigation and implementation of a new hybrid excitation synchronous machine drive system," IET Electric Power Applications, Vol. 11, No. 4, 487-494, Apr. 2017.
doi:10.1049/iet-epa.2016.0542

8. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.
doi:10.2528/PIER10121603

9. Cheng, Ming, Peng Han, and Wei Hua, "General airgap field modulation theory for electrical machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6063-6074, Mar. 2017.

10. Yu, Zixiang, Wubin Kong, Ronghai Qu, Dawei Li, Shaofeng Jia, Dong Jiang, Jianbo Sun, and Hongtao Li, "Optimal three-dimensional current computation flux weakening control strategy for dc-biased vernier reluctance machines considering inductance nonlinearity," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1560-1571, Feb. 2019.
doi:10.1109/TPEL.2018.2831248

11. Zhu, Z. Q. and D. Evans, "Overview of recent advances in innovative electrical machines-with particular reference to magnetically geared switched flux machines," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 1-10, Oct. 2014.

12. Zhao, Xing, Shuangxia Niu, Xiaodong Zhang, and Weinong Fu, "A new relieving-dc-saturation hybrid excitation vernier machine for hev starter generator application," IEEE Transactions on Industrial Electronics, Vol. 67, No. 8, 6342-6353, Aug. 2020.
doi:10.1109/TIE.2019.2939966

13. Liu, Chunhua, K. T. Chau, J. Z. Jiang, and Linni Jian, "Design of a new outer-rotor permanent magnet hybrid machine for wind power generation," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1494-1497, Jun. 2008.
doi:10.1109/TMAG.2007.916503

14. Yang, Hui, Heyun Lin, Z. Q. Zhu, Shuhua Fang, and Yunkai Huang, "Novel flux-regulatable dual-magnet vernier memory machines for electric vehicle propulsion," IEEE Transactions on Applied Superconductivity, Vol. 24, No. 5, 1-5, Oct. 2014.
doi:10.1109/TASC.2014.2340454

15. Hua, Hao and Z. Q. Zhu, "Comparative study of series and parallel hybrid excited machines," IEEE Transactions on Energy Conversion, Vol. 35, No. 3, 1705-1714, Sep. 2020.
doi:10.1109/TEC.2020.2990151

16. Deng, Y. W., K. Wang, J. Li, and T. Wang, "Comparison of different flux-weakening strategies of AC-excited hybrid excitation synchronous motor," 2022 25th International Conference on Electrical Machines and Systems (ICEMS), 1-5, Nov./Dec. 2022.

17. Daniel, Mamo, Yuichi Yokoi, and Tsuyoshi Higuchi, "A comparative study of hybrid excited half-wave rectified synchronous motor with different hybridization ratios considering electric vehicle operating conditions," 2021 24th International Conference on Electrical Machines and Systems (ICEMS 2021), 432-436, Gyeongju, South Korea, Oct. 2021.
doi:10.23919/ICEMS52562.2021.9634216

18. Cinti, L., P. G. Carlet, L. Ortombina, and N. Bianchi, "Flux-weakening control of hybrid-excited permanent magnet synchronous motors," 2022 IEEE Energy Conversion Congress and Exposition (ECCE), 1-8, Detroit, MI, Oct. 2022.
doi:10.1109/ECCE50734.2022.9948090

19. Ostroverkhov, Mykola, Yevhen Monakhov, and Vadim Chumack, "Study of robust speed control of hybrid excited synchronous machine with field weakening," IEEE Problems of Automated Electrodrive Theory and Practice, 1-5, Sep. 2020.

20. Huang, Mingming, Heyun Lin, Huang Yunkai, Ping Jin, and Yujing Guo, "Fuzzy control for flux weakening of hybrid exciting synchronous motor based on particle swarm optimization algorithm," IEEE Transactions on Magnetics, Vol. 48, No. 11, 2989-2992, Nov. 2012.
doi:10.1109/TMAG.2012.2196761

21. Zhao, Jilong, Mingyao Lin, Da Xu, Li Hao, and Wei Zhang, "Vector control of a hybrid axial field flux-switching permanent magnet machine based on particle swarm optimization," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, Nov. 2015.
doi:10.1109/TMAG.2015.2435156

22. Jia, Shaofeng, Ronghai Qu, Wubin Kong, Dawei Li, Jian Li, Zixiang Yu, and Haiyang Fang, "Hybrid excitation stator PM vernier machines with novel dc-biased sinusoidal armature current," IEEE Transactions on Industry Applications, Vol. 54, No. 2, 1339-1348, Mar. 2018.
doi:10.1109/TIA.2017.2779805