Vol. 139
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-12-29
Gain Enhanced 26 GHz Antenna for 5G Communication Technology
By
Progress In Electromagnetics Research C, Vol. 139, 187-195, 2024
Abstract
Wireless technology, a longstanding focus for researchers, has evolved into an exciting telecommunications topic over several decades. The most recent iteration, Fifth Generation (5G), has been introduced at high frequencies, commonly called millimeter waves. An integral component supporting wireless communication is the antenna. This report details the design of a microstrip antenna operating at a frequency of 26 GHz. The antenna is configured as a rectangular patch microstrip, utilizing coupled slot feeding, organized as an array, and implementing a ring as the gain enhancement technique. The designed antenna undergoes observation for both single-element and 1x2 arrays, both with and without rings. A thorough analysis encompasses gain, bandwidth, return loss, and radiation pattern. The antenna design, developed at a frequency of 26 GHz, demonstrates a substantial gain increase of up to 10 dB and 14 dB in the single-element and 1×2 array configurations achieved by adding a ring. The designed antenna surpasses the previous works' gain of about 3 dB more.
Citation
Eko Setijadi, Prasetiyono Hari Mukti, and Wolfgang Bosch, "Gain Enhanced 26 GHz Antenna for 5G Communication Technology," Progress In Electromagnetics Research C, Vol. 139, 187-195, 2024.
doi:10.2528/PIERC23102602
References

1. and Support 5G, ITU News Magazine, 21-23, Nov. 2019.

2. Andrews, Jeffrey G., Stefano Buzzi, Wan Choi, Stephen V. Hanly, Angel Lozano, Anthony C. K. Soong, and Jianzhong Charlie Zhang, "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098

3. Agiwal, Mamta, Abhishek Roy, and Navrati Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Communications Surveys and Tutorials, Vol. 18, No. 3, 1617-1655, 2016.
doi:10.1109/COMST.2016.2532458

4. and International Telecommunication Union, "Additional Frequency Bands Identified to,", Jun. 2014.
doi:10.1109/COMST.2016.2532458

5. Series, M., "IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond," Recommendation ITU, Vol. 2083-0, 2015.

6. Thakur, V., N. Jaglan, and S. D. Gupta, "A review on antenna design for 5G applications," 2020 6th International Conference on Signal Processing and Communication (ICSC), 266-271, Noida, India, 2020.
doi:10.1109/ICSC48311.2020.9182774

7. Intelligence, G. S. M. A., "Understanding 5G: perspectives on future technological advancements in mobile," White Paper, 1-26, 2014.

8. Chen, Shanzhi and Jian Zhao, "The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication," IEEE Communications Magazine, Vol. 52, No. 5, 36-43, May 2014.
doi:10.1109/MCOM.2014.6815891

9. Dwivedi, Smrity, "Effect of thickness of substrate on antenna design for advance communication," Proceedings of The 7th International Conference on Cloud Computing, Data Science and Engineering (Confluence 2017), 770-774, Noida, India, Jan. 12-13 2017.

10. Kedze, Kam Eucharist, Heesu Wang, Yong Bae Park, and Ikmo Park, "Substrate dielectric constant effects on the performances of a metasurface-based circularly polarized microstrip patch antenna," International Journal of Antennas and Propagation, Vol. 2022, Sep. 30 2022.
doi:10.1155/2022/3026677

11. Pratiwi, Ainnur Rahayu, Eko Setijadi, and Gamantyo Hendrantoro, "Design of two-elements subarray with parasitic patch for 5G application," 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), 311--316, 2020.

12. Amillia, Fitri, Eko Setijadi, and Gamantyo Hendrantoro, "The effect of parasitic patches addition on bandwidth enhancement and mutual coupling in 2 x 2 sub-arrays," IEEE Access, Vol. 10, 72057-72064, 2022.
doi:10.1109/ACCESS.2022.3185999

13. Srivastava, Harshit, Amandeep Singh, Arathy Rajeev, and Usha Tiwari, "Bandwidth and gain enhancement of rectangular microstrip patch antenna (RMPA) using slotted array technique," Wireless Personal Communications, Vol. 114, No. 1, 699-709, Sep. 2020.
doi:10.1007/s11277-020-07388-x

14. Faeghi, Pouya, Changiz Ghobadi, Javad Nourinia, and Bal Virdee, "Nanoparticle-coated vivaldi antenna array for gain enhancement," Applied Physics A-materials Science & Processing, Vol. 129, No. 3, Mar. 2023.
doi:10.1007/s00339-023-06505-4

15. Koul, Shiban Kishen and G. S. Karthikeya, "Feeding techniques for mmwave antennas," Antenna Architectures for Future Wireless Devices, 207--229, 2021.

16. Ulfah, Mia Maria, Panuwat Janpugdee, and Danai Torrungrueng, "Feeding effects to gain enhancement of microstrip antennas with partially reflective surfaces," 2022 International Symposium on Antennas and Propagation (ISAP), 435-436, Sydney, Australia, Oct. 31-nov. 03 2022.
doi:10.1109/ISAP53582.2022.9998651

17. Ghenjeti, Sirine, Rim Barrak, and Soumaya Hamouda, "High gain and compact microstrip patch antenna array design for 26 GHz broadband wireless systems," 2023 IEEE Symposium on Computers and Communications (ISCC), 932--937, 2023.

18. Balanis, Constantine A, Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

19. Johnson, R. C., Antenna Engineering Handbook, 3 Ed., McGraw-Hill, New York, 1993.

20. Huang, Yi, Antennas: from Theory to Practice, John Wiley & Sons, 2008.
doi:10.1002/9780470772911