1. and Support 5G, ITU News Magazine, 21-23, Nov. 2019.
2. Andrews, Jeffrey G., Stefano Buzzi, Wan Choi, Stephen V. Hanly, Angel Lozano, Anthony C. K. Soong, and Jianzhong Charlie Zhang, "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098
3. Agiwal, Mamta, Abhishek Roy, and Navrati Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Communications Surveys and Tutorials, Vol. 18, No. 3, 1617-1655, 2016.
doi:10.1109/COMST.2016.2532458
4. and International Telecommunication Union, "Additional Frequency Bands Identified to,", Jun. 2014.
doi:10.1109/COMST.2016.2532458
5. Series, M., "IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond," Recommendation ITU, Vol. 2083-0, 2015.
6. Thakur, V., N. Jaglan, and S. D. Gupta, "A review on antenna design for 5G applications," 2020 6th International Conference on Signal Processing and Communication (ICSC), 266-271, Noida, India, 2020.
doi:10.1109/ICSC48311.2020.9182774
7. Intelligence, G. S. M. A., "Understanding 5G: perspectives on future technological advancements in mobile," White Paper, 1-26, 2014.
8. Chen, Shanzhi and Jian Zhao, "The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication," IEEE Communications Magazine, Vol. 52, No. 5, 36-43, May 2014.
doi:10.1109/MCOM.2014.6815891
9. Dwivedi, Smrity, "Effect of thickness of substrate on antenna design for advance communication," Proceedings of The 7th International Conference on Cloud Computing, Data Science and Engineering (Confluence 2017), 770-774, Noida, India, Jan. 12-13 2017.
10. Kedze, Kam Eucharist, Heesu Wang, Yong Bae Park, and Ikmo Park, "Substrate dielectric constant effects on the performances of a metasurface-based circularly polarized microstrip patch antenna," International Journal of Antennas and Propagation, Vol. 2022, Sep. 30 2022.
doi:10.1155/2022/3026677
11. Pratiwi, Ainnur Rahayu, Eko Setijadi, and Gamantyo Hendrantoro, "Design of two-elements subarray with parasitic patch for 5G application," 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), 311--316, 2020.
12. Amillia, Fitri, Eko Setijadi, and Gamantyo Hendrantoro, "The effect of parasitic patches addition on bandwidth enhancement and mutual coupling in 2 x 2 sub-arrays," IEEE Access, Vol. 10, 72057-72064, 2022.
doi:10.1109/ACCESS.2022.3185999
13. Srivastava, Harshit, Amandeep Singh, Arathy Rajeev, and Usha Tiwari, "Bandwidth and gain enhancement of rectangular microstrip patch antenna (RMPA) using slotted array technique," Wireless Personal Communications, Vol. 114, No. 1, 699-709, Sep. 2020.
doi:10.1007/s11277-020-07388-x
14. Faeghi, Pouya, Changiz Ghobadi, Javad Nourinia, and Bal Virdee, "Nanoparticle-coated vivaldi antenna array for gain enhancement," Applied Physics A-materials Science & Processing, Vol. 129, No. 3, Mar. 2023.
doi:10.1007/s00339-023-06505-4
15. Koul, Shiban Kishen and G. S. Karthikeya, "Feeding techniques for mmwave antennas," Antenna Architectures for Future Wireless Devices, 207--229, 2021.
16. Ulfah, Mia Maria, Panuwat Janpugdee, and Danai Torrungrueng, "Feeding effects to gain enhancement of microstrip antennas with partially reflective surfaces," 2022 International Symposium on Antennas and Propagation (ISAP), 435-436, Sydney, Australia, Oct. 31-nov. 03 2022.
doi:10.1109/ISAP53582.2022.9998651
17. Ghenjeti, Sirine, Rim Barrak, and Soumaya Hamouda, "High gain and compact microstrip patch antenna array design for 26 GHz broadband wireless systems," 2023 IEEE Symposium on Computers and Communications (ISCC), 932--937, 2023.
18. Balanis, Constantine A, Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.
19. Johnson, R. C., Antenna Engineering Handbook, 3 Ed., McGraw-Hill, New York, 1993.
20. Huang, Yi, Antennas: from Theory to Practice, John Wiley & Sons, 2008.
doi:10.1002/9780470772911