Vol. 141
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-02-05
Impact of Laser Cutting on Iron Loss in High Speed Machines
By
Progress In Electromagnetics Research C, Vol. 141, 67-78, 2024
Abstract
In electrical machines, most of the iron loss estimation in finite element modeling is based on Bertotti coefficients obtained from the corresponding data sheet. However, often a more exact estimation of coefficients for the laminated steel material is needed. Especially in the case of high speed machines (where iron loss has the highest contribution to the total loss), it is very difficult to estimate the iron loss variation as a result of laser cutting when just using data sheet information as input data in finite element analysis. Laser cutting impacts also the magnetic properties, in terms of magnetization curves at different frequencies, not only the core losses. In this paper, three different core materials of the same lamination steel are prepared to realize the estimation of the Berttotti loss coefficient when the material is subjected to high frequency and under the stress of laser cutting. Experimental analysis is performed to obtain more precise values of Bertotti coefficients at a high frequency range so that they can be utilized in iron loss estimation in a high speed machine (100 krpm maximum speed-1667 Hz) which is further shown as an application. Finally, it is shown how frequency domain iron loss results can be utilized for the time stepping iron loss analysis.
Citation
Shruti Singh, Andrea Credo, Ilya Petrov, Juha Pyrhönen, and Pia Marjatta Lindh, "Impact of Laser Cutting on Iron Loss in High Speed Machines," Progress In Electromagnetics Research C, Vol. 141, 67-78, 2024.
doi:10.2528/PIERC23100302
References

1. Hargreaves, Philip A., Barrie C. Mecrow, and Ross Hall, "Calculation of iron loss in electrical generators using finite-element analysis," IEEE Transactions on Industry Applications, Vol. 48, No. 5, 1460-1466, 2012.
doi:10.1109/TIA.2012.2209851

2. Krings, Andreas, "Iron losses in electrical machines-influence of material properties, manufacturing processes, and inverter operation," Ph.D. dissertation, KTH Royal Institute of Technology, 2014.

3. Abo-Seida, Osama M., Nabil T. M. El-dabe, A. Refaie Ali, and G. A. Shalaby, "Cherenkov FEL reaction with plasma-filled cylindrical waveguide in fractional D-dimensional space," IEEE Transactions on Plasma Science, Vol. 49, No. 7, 2070-2079, Jul. 2021.
doi:10.1109/TPS.2021.3084904

4. Hofmann, Markus, Hristian Naumoski, Ulrich Herr, and Hans-Georg Herzog, "Magnetic properties of electrical steel sheets in respect of cutting: Micromagnetic analysis and macromagnetic modeling," IEEE Transactions on Magnetics, Vol. 52, No. 2, 2000114, Feb. 2016.
doi:10.1109/TMAG.2015.2484280

5. Vandenbossche, Lode, Sigrid Jacobs, François Henrotte, and Kay Hameyer, "Impact of cut edges on magnetization curves and iron losses in e-machines for automotive traction," World Electric Vehicle Journal, Vol. 4, No. 3, 587-596, 2010.
doi:10.3390/wevj4030587

6. El-Dabe, Nabil T. M., A. Refaie Ali, A. A. El-shekhipy, and G. Shalaby, "Non-linear heat and mass transfer of second grade fluid flow with hall currents and thermophoresis effects," Appl. Math., Vol. 11, No. 1, 267-280, 2017.

7. Moses, A. J., N. Derebasi, G. Loisos, and A. Schoppa, "Aspects of the cut-edge effect stress on the power loss and flux density distribution in electrical steel sheets," Journal of Magnetism and Magnetic Materials, Vol. 215, 690-692, Jun. 2000.
doi:10.1016/S0304-8853(00)00260-2

8. Saleem, Aroba, Natheer Alatawneh, Richard R. Chromik, and David A. Lowther, "Effect of shear cutting on microstructure and magnetic properties of non-oriented electrical steel," IEEE Transactions on Magnetics, Vol. 52, No. 5, 2001904, May 2016.
doi:10.1109/TMAG.2015.2512920

9. Al-Timimy, Ahmed, Gaurang Vakil, Michele Degano, Paolo Giangrande, Chris Gerada, and Michael Galea, "Considerations on the effects that core material machining has on an electrical machine's performance," IEEE Transactions on Energy Conversion, Vol. 33, No. 3, 1154-1163, 2018.

10. Boubaker, Nadhem, Daniel Matt, Philippe Enrici, Florent Nierlich, and Guillaume Durand, "Measurements of iron loss in PMSM stator cores based on CoFe and SiFe lamination sheets and stemmed from different manufacturing processes," IEEE Transactions on Magnetics, Vol. 55, No. 1, 1-9, 2018.

11. Jordan, H., "The ferromagnetic constants for weak alternating fields," Elec. After. Techn., Vol. 1, No. 8, 1924.

12. Bertotti, Giorgio, Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, Gulf Professional Publishing, 1998.

13. Zhang, Yue, Seán McLoone, and Wenping Cao, "Electromagnetic loss modeling and demagnetization analysis for high speed permanent magnet machine," IEEE Transactions on Magnetics, Vol. 54, No. 3, 8200405, 2017.

14. Ionel, Dan M., Mircea Popescu, Malcolm I. McGilp, T. J. E. Miller, Stephen J. Dellinger, and Robert J. Heideman, "Computation of core losses in electrical machines using improved models for laminated steel," IEEE Transactions on Industry Applications, Vol. 43, No. 6, 1554-1564, 2007.

15. Leandro, Matteo, Nada Elloumi, Alberto Tessarolo, and Jonas Kristiansen Nøland, "Analytical iron loss evaluation in the stator yoke of slotless surface-mounted PM machines," IEEE Transactions on Industry Applications, Vol. 58, No. 4, 4602-4613, 2022.
doi:10.1109/TIA.2022.3171528

16. Ionel, Dan M., Mircea Popescu, Stephen J. Dellinger, T. J. E. Miller, Robert J. Heideman, and Malcolm I. McGilp, "On the variation with flux and frequency of the core loss coefficients in electrical machines," IEEE Transactions on Industry Applications, Vol. 42, No. 3, 658-667, 2006.
doi:10.1109/TIA.2006.872941

17. Hernandez-Aramburo, C. A., T. C. Green, and A. C. Smith, "Estimating rotational iron losses in an induction machine," IEEE Transactions on Magnetics, Vol. 39, No. 6, 3527-3533, Nov. 2003.
doi:10.1109/TMAG.2003.819451

18. Stranges, Nick and Raymond D. Findlay, "Measurement of rotational iron losses in electrical sheet," IEEE Transactions on Magnetics, Vol. 36, No. 5, 3457-3459, 2000.

19. Seo, Jang-Ho, Tae-Kyung Chung, Cheol-Gyun Lee, Sang-Yong Jung, and Hyun-Kyo Jung, "Harmonic iron loss analysis of electrical machines for high-speed operation considering driving condition," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4656-4659, 2009.

20. Sundaria, Ravi, Devi Geetha Nair, Antti Lehikoinen, Antero Arkkio, and Anouar Belahcen, "Effect of laser cutting on core losses in electrical machines --- Measurements and modeling," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7354-7363, 2019.

21. Siebert, René, Jûrgen Schneider, and Eckhard Beyer, "Laser cutting and mechanical cutting of electrical steels and its effect on the magnetic properties," IEEE Transactions on Magnetics, Vol. 50, No. 4, 2001904, 2014.
doi:10.1109/TMAG.2013.2285256

22. Boutabba, N., "Nonmagnetic negative refractive index media based on chalcogenide glasses," Appl. Math., Vol. 17, No. 2, 223-226, 2023.

23. Abeywickrama, K. G. Nilanga B., Tadeusz Daszczynski, Yuriy V. Serdyuk, and Stanislaw M. Gubanski, "Determination of complex permeability of silicon steel for use in high-frequency modeling of power transformers," IEEE Transactions on Magnetics, Vol. 44, No. 4, 438-444, Apr. 2008.
doi:10.1109/TMAG.2007.914857

24. Islam, Shariful, Bishnupada Halder, and Ahmed Refaie Ali, "Optical and rogue type electrical soliton solutions of the (2+1) dimensional nonlinear heisenberg ferromagnetic spin chains equation," Scientific Reports, Vol. 13, 9906, 2023.
doi:10.1038/s41598-023-36536-z

25. Osman, M. S., K. U. Tariq, Ahmet Bekir, A. Elmoasry, Nasser S. Elazab, M. Younis, and Mahmoud Abdel-Aty, "Investigation of soliton solutions with different wave structures to the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation," Communications in Theoretical Physics, Vol. 72, No. 3, 035002, 2020.
doi:10.1088/1572-9494/ab6181

26. Manescu, Veronica, Gheorghe Paltanea, Horia Gavrila, and Ioan Peter, "The influence of punching and laser cutting technologies on the magnetic properties of non-oriented silicon iron steels," 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, Nov. 2014.
doi:10.1109/ISFEE.2014.7050611

27. Singh, Shruti, Ilya Petrov, Juha Pyrhönen, and Peter Sergeant, "Conceptual design of high-speed permanent-magnet generator for a micro gas turbine," 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 2022.

28. Vo, Anh-Tuan, Marylin Fassenet, Valentin Preault, Christophe Espanet, and Afef Kedous-Lebouc, "New formulation of loss-surface model for accurate iron loss modeling at extreme flux density and flux variation: Experimental analysis and test on a high-speed PMSM," Journal of Magnetism and Magnetic Materials, Vol. 563, 169935, 2022.
doi:10.1016/j.jmmm.2022.169935

29. Zhu, Qinyue, Quanpeng Wu, Wei Li, Minh-Trien Pham, and Lixun Zhu, "A general and accurate iron loss calculation method considering harmonics based on loss surface hysteresis model and finite-element method," IEEE Transactions on Industry Applications, Vol. 57, No. 1, 374-381, 2021.
doi:10.1109/TIA.2020.3036017