Vol. 139
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-11-24
The Direct Torque Control of Brushless DC Motor Based on Sliding Mode Variable Structure
By
Progress In Electromagnetics Research C, Vol. 139, 21-29, 2024
Abstract
Aiming at the problem of slow response speed and poor anti-interference ability using the traditional PI control in the direct torque control strategy of brushless DC motor (BLDCM), the direct torque control (DTC) of the BLDCM based on the sliding mode change (SMC) structure is proposed. In the BLDCM DTC system under the new flux linkage set mode, the traditional PI control is replaced by the improved SMC control to realize the new torque given mode and realize the DTC of the BLDCM. Firstly, the integral sliding mode surface is used instead of the traditional linear sliding mode surface to optimize the continuity of the SMC structure and reduce the high-frequency perturbation caused by the differential phase, thus reducing the smooth torque and system steady-state error. Secondly, the system is simulated by MATLAB/SIMULINK; the given torque of the improved SMC is the most stable; and the speed response curve is smoother. Finally, the construction of the BLDCM test platform is completed. The experimental results show that in the BLDCM DTC control system of the new flux linkage set mode, based on the improved SMC, the system has faster response speed and stronger anti-interference, and shows stronger dynamic and static performance.
Citation
Gai Liu, Yiran Wu, and Qingbo Shao, "The Direct Torque Control of Brushless DC Motor Based on Sliding Mode Variable Structure," Progress In Electromagnetics Research C, Vol. 139, 21-29, 2024.
doi:10.2528/PIERC23092701
References

1. Khazaee, A., H. A. Zarchi, G. A. Markadeh, and H. M. Hesar, "MTPA Strategy for Direct Torque Control of Brushless DC Motor Drive," IEEE Transactions on Industrial Electronics, Vol. 68, No. 8, 6692-6700, Aug. 2021.
doi:10.1109/TIE.2020.3009576

2. De Castro, A. G., W. C. A. Pereira, T. E. P. De Almeida, et al. "Improved Finite Control-Set Model-Based Direct Power Control of BLDC Motor With Reduced Torque Ripple," IEEE Transactions on Industry Applications, Vol. 54, No. 5, 4476-4484, Sept. 2018.
doi:10.1109/TIA.2018.2835394

3. Zhou, Y., D. Zhang, X. Chen, and Q. Lin, "Sensorless Direct Torque Control for Saliency Permanent Magnet Brushless DC Motors," IEEE Transactions on Energy Conversion, Vol. 31, No. 2, 446-454, June. 2016.
doi:10.1109/TEC.2015.2505326

4. Maharajan, M. P. and S. A. E. Xavier, "Design of Speed Control and Reduction of Torque Ripple Factor in BLdc Motor Using Spider Based Controller," IEEE Transactions on Power Electronics, Vol. 34, No. 8, 7826-7837, Aug. 2019.
doi:10.1109/TPEL.2018.2880916

5. De Toledo, H. and J. L. Azcue, "Direct Power Control with Space Vector Modulation Applied for the Brushless DC Motor," 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), 1-6, 2019.

6. Akshay, R. S. R. and M. A. Chaudhari, "Direct torque control of PM BLDC motor using fuzzy controllers," 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 1-6, 2017.

7. Narasimha Rao, C. N. and G. DurgaSukumar, "Analysis of Torque Ripple in Vector Control of BLDC Motor using SVPWM Technique," 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 519-523, 2020.
doi:10.1109/ICECA49313.2020.9297558

8. Rajani, B., K. V. Rao, and R. Srinivas, "DC Link Voltage Stabilization in Renewable Source Connected DC Micro Grid using Adaptive Sliding mode Controller," 2021 Emerging Trends in Industry 4.0 (ETI 4.0), No. ., 1-6, 2021.

9. Hafez, A. T., A. A. Sarhan, and S. Givigi, "Brushless DC Motor Speed Control Based on Advanced Sliding Mode Control (SMC) Techniques," 2019 IEEE International Systems Conference (SysCon), 1-6, 2019.

10. Putra, E. H., Z. Has, and M. Effendy, "Robust Adaptive Sliding Mode Control Design with Genetic Algorithm for Brushless DC Motor," 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018.

11. Ma, H., J. F. Yang, Y. P. Dou, et al. "A Simple Control Method for Direct Torque Control of BLDCM with Low Resolution Hall Sensors," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 493-496, 2018.
doi:10.23919/ICEMS.2018.8549281

12. Lee, K., F. Li, and W. Yao, "Comparative Performance Evaluation of Hall Effect Sensorless Control Options in Permanent Magnet Brushless DC Motor Drives," 2019 IEEE International Electric Machines & Drives Conference (IEMDC), 1110-1117, 2019.
doi:10.1109/IEMDC.2019.8785263

13. Aghili, F., "Ripple suppression of BLDC motors with finite driver/amplifer bandwidth at high velocity," IEEE Transactions on Control Systems Technology, Vol. 19, No. 2, 391-397, 2011.
doi:10.1109/TCST.2010.2045502

14. Fang, J., "Torque ripple reduction in BLDC torque motor with nonideal back EMF," IEEE Transactions on Power Electronics, Vol. 27, No. 11, 4630-4637, 2012.
doi:10.1109/TPEL.2011.2176143

15. Guo, H., B. Zhou, G. Zuo, et al. "Adaptive Sliding-mode Observer for Back Electromotive Force Estimation of Brushless DC Motror," Proceedings of the CSEE, 2011.