Vol. 138
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-10-26
A Novel Design Method for Unequal Coupled Line Dual-Band Wilkinson Power Divider
By
Progress In Electromagnetics Research C, Vol. 138, 175-189, 2023
Abstract
In this article, a new design approach for an unequal coupled transmission line dual-band Wilkinson power divider is presented. A parallel short or open circuit stub is considered at the input port for dual frequency response, and two resistors are connected in order to isolate the outputs. The method is based on an even-odd mode procedure. The main objective of this paper is to fabricate a dual band Wilkinson power divider in order to achieve higher dividing ratio, simple structure, and easier fabrication. First, the desired power divider is divided to two parts known as even and odd mode equivalent circuits. Then by analyzing the circuits, the characteristic impedances are calculated. Next, the coupled transmission lines dimensions are extracted. Afterward by using the calculated characteristic impedances, an error function is formulated, and by minimizing, the isolating resistors are obtained. To clarify the applicability of this method, several microstrip power dividers which operate at both 1 GHz and 2.3 GHz with dividing ratio equal to 1.2589 are designed and simulated with the assumption that relative permittivity is equal to 2.56. In order to demonstration the advantage of using coupled lines tow dividers, one by separated-lines and the other one by coupled-lines are designed and compared with each other. The results illustrate that while the coupled-line dividers have simpler structure, they have significantly similar frequency operation to separated-line ones. Then the designed structure fabricated on an FR4 substrate and S parameters are measured. The results show excellent agreement with simulation.
Citation
Puria Salimi, Mohsen Katebi Jahromi, and Alireza Khoddam Astaneh Hossein, "A Novel Design Method for Unequal Coupled Line Dual-Band Wilkinson Power Divider," Progress In Electromagnetics Research C, Vol. 138, 175-189, 2023.
doi:10.2528/PIERC23091701
References

1. Wilkinson, E. J., "An N-way hybrid power divider," IRE Transactions on Microwave Theory and Techniques, Vol. 8, No. 1, 116-118, 1960.
doi:10.1109/TMTT.1960.1124668

2. Pozar, D. M., Microwave Engineering, 367-368, John Wiley & Sons. Inc., 1998.

3. Salimi, P., M. Moradianpour, and E. Borzabadi, "Broadband asymmetrical multi-section coupled line Wilkinson power divider with unequal power dividing ratio," Progress In Electromagnetics Research C, Vol. 43, 217-229, 2013.
doi:10.2528/PIERC13080201

4. Lin, I.-H., M. DeVincentis, C. Caloz, et al. "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747

5. Wu, L., H. Yilmaz, T. Bitzer, et al. "A dual-frequency Wilkinson power divider: For a frequency and its first harmonic," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 107-109, 2005.
doi:10.1109/LMWC.2004.842848

6. Wu, Y., Y. Liu, Y. Zhang, et al. "A dual band unequal Wilkinson power divider without reactive components," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 1, 216-222, 2008.

7. Park, M.-J., "Two-section cascaded coupled line Wilkinson power divider for dual-band applications," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 4, 188-190, 2009.
doi:10.1109/LMWC.2009.2015482

8. Wu, Y., Y. Liu, and Q. Xue, "An analytical approach for a novel coupled-line dual-band Wilkinson power divider," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 2, 286-294, 2010.
doi:10.1109/TMTT.2010.2084096

9. Li, J., Y. Wu, Y. Liu, J.-Y. Shen, S. Li, and C. Yu, "A generalized coupled-line dual-band Wilkinson power divider with extended ports," Progress In Electromagnetics Research, Vol. 129, 197-214, 2012.
doi:10.2528/PIER12050908

10. Wang, X., I. Sakagami, A. Mase, et al. "Dual-band Wilkinson power divider and its miniaturization using coupled line sections," 2012 Asia Pacific Microwave Conference Proceedings, 1256-1258, IEEE, 2012.
doi:10.1109/APMC.2012.6421887

11. Tsai, G.-D. and Y.-H. Pang, "Dual-band Wilkinson power divider using cross-paired coupled lines," 2012 Asia Pacific Microwave Conference Proceedings, 980-982, IEEE, 2012.
doi:10.1109/APMC.2012.6421798

12. Wang, W. M. and Y. A. Liu, "A novel small-size coupled-line Wilkinson power divider for dual-band applications," Applied Mechanics and Materials, Vol. 437, 1066-1072, 2013.
doi:10.4028/www.scientific.net/AMM.437.1066

13. Xu, X. and X. Tang, "A design approach for dual-band Wilkinson power divider with two pairs of coupled-line sections," Progress In Electromagnetics Research Letters, Vol. 45, 81-87, 2014.
doi:10.2528/PIERL14030802

14. Maktoomi, M. H., D. Banerjee, and M. S. Hashmi, "An enhanced frequency-ratio coupled-line dual-frequency Wilkinson power divider," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, No. 7, 888-892, 2017.
doi:10.1109/TCSII.2017.2749407

15. Ravelo, B. and O. Maurice, "Kron-Branin modeling of YY-tree interconnects for the PCB signal integrity analysis," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 411-419, 2016.
doi:10.1109/TEMC.2016.2610519

16. Ravelo, B., O. Maurice, and S. Lallechere, "Asymmetrical 1: 2 Y-tree interconnects modelling with Kron-Branin formalism," Electronics Letters, Vol. 52, No. 14, 1215-1216, 2016.
doi:10.1049/el.2016.1142

17. Kumar, A. and N. P. Pathak, "A compact reconfigurable concurrent dual-band Wilkinson power divider for noninvasive vital sign detection applications," 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014), 434-437, IEEE, 2014.
doi:10.1109/ICSPCT.2014.6885006

18. Mohra, A. S., "Compact dual band Wilkinson power divider," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1678-1682, 2008.
doi:10.1002/mop.23465

19. Rostami, P. and S. Roshani, "A miniaturized dual band Wilkinson power divider using capacitor loaded transmission lines," AEU --- International Journal of Electronics and Communications, Vol. 90, 63-68, 2018.
doi:10.1016/j.aeue.2018.04.014

20. Wang, X., N. Kimata, Z. Ma, et al. "Dual-band bandpass filter type Wilkinson power divider with microstrip composite resonators," 2017 IEEE Asia Pacific Microwave Conference (APMC), 299-301, IEEE, 2017.
doi:10.1109/APMC.2017.8251438

21. Wang, X., I. Sakagami, Z. Ma, et al. "Generalized, miniaturized, dual-band Wilkinson power divider with a parallel RLC circuit," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 1, 418-423, 2015.
doi:10.1016/j.aeue.2014.10.020

22. Wang, Z., J. S. Jang, and C.-W. Park, "Compact dual-band Wilkinson power divider using lumped component resonators and open-circuited stubs," WAMICON 2011 Conference Proceedings, 1-4, IEEE, 2011.

23. Wu, Y., Y. A. Liu, and S. Li, "A compact pi-structure dual band transformer," Progress In Electromagnetics Research, Vol. 88, 121-134, 2008.
doi:10.2528/PIER08102601

24. Lin, Z. and Q.-X. Chu, "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines," Progress In Electromagnetics Research, Vol. 103, 271-284, 2010.
doi:10.2528/PIER10012202

25. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

26. Xi, L. and Y. Lin, "A novel design of dual-band Wilkinson power divider with simple structure and wide band-ratios characteristics," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 13, 1635-1641, 2014.
doi:10.1080/09205071.2014.938171

27. Bedar Khan, Z., H. Zhao, and Y. Zhang, "Simplified approach for design of dual-band Wilkinson power divider with three transmission line sections," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2374-2377, 2016.
doi:10.1002/mop.30052

28. Park, M.-J. and B. Lee, "A dual-band Wilkinson power divider," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 2, 85-87, 2008.
doi:10.1109/LMWC.2007.915031

29. Wu, Y., Y. Liu, S. Li, et al. "A new design method for unequal dual-band modified Wilkinson power divider," Electromagnetics, Vol. 30, No. 3, 269-284, 2010.
doi:10.1080/02726340903577434

30. Wu, Y., Y. Liu, S. Li, et al. "Extremely unequal Wilkinson power divider with dual transmission lines," Electronics Letters, Vol. 46, No. 1, 90-91, 2010.
doi:10.1049/el.2010.2714

31. Al Shamaileh, K., N. Dib, and S. Abushamleh, "A dual-band 1: 10 Wilkinson power divider based on multi-T-section characterization of high-impedance transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 10, 897-899, 2017.
doi:10.1109/LMWC.2017.2746665

32. Li, X., Y.-J. Yang, L. Yang, S.-X. Gong, X. Tao, Y. Gao, K. Ma, and X.-L. Liu, "A novel design of dual-band unequal Wilkinson power divider," Progress In Electromagnetics Research C, Vol. 12, 93-100, 2010.
doi:10.2528/PIERC10010705

33. Salimi, P., "A design procedure for multi-section micro-strip Wilkinson power divider with arbitrary dividing ratio," International Journal of New Technology and Research, Vol. 3, No. 12, 263170, 2017.

34. Mongia, R., I. J. Bahl, and P. Bhartia, RF and Microwave Coupled-line Circuits, 1999.