Vol. 138
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-11-10
Metasurface Based Circularly Polarized Antenna for Wi-Fi Applications
By
Progress In Electromagnetics Research C, Vol. 138, 219-231, 2023
Abstract
In this paper, reactive impedance surface metasurface (RIS-MS) and negative refractive index metasurface (NRI-MS) are used to design a wideband, high gain, circularly polarized slot loaded patch antenna (SLPA) for 5 GHz WI-FI applications. The RIS-MS is utilized to improve the antenna's bandwidth. It is composed of 6×6 metallic circular patches that are periodic. To improve bandwidth, the RIS-MS is placed between the SLPA and ground plane of a conventional antenna. A metasurface lens composed of 6×6 periodic NRI metamaterial unit cells enhances the gain of the antenna. The NRI-MS superstrate is positioned at the optimal height above the conventional antenna. A prototype of the proposed antenna has been fabricated and measured experimentally. The prototype has an impedance bandwidth (IBW) of 21.7% (5.12-6.37 GHz), a 3-dB axial ratio bandwidth (ARBW) of 18.2% (5.19-6.23 GHz), and a gain of 13.5 dBic.
Citation
Swapna Kumari Budarapu, Metuku Shyam Sunder, and Dasari Ramakrishna, "Metasurface Based Circularly Polarized Antenna for Wi-Fi Applications," Progress In Electromagnetics Research C, Vol. 138, 219-231, 2023.
doi:10.2528/PIERC23091001
References

1. Holloway, C. L., A. M. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, "A discussion on the interpretation and characterization of metafilms/metasurfaces: The twodimensional equivalent of metamaterials," Metamaterials, Vol. 3, 100-112, 2009.
doi:10.1016/j.metmat.2009.08.001

2. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

3. Yang, F.-R., K.-P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Transactions on Microwave Theory and Techniques , Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

4. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135

5. Nakamura, T. and T. Fukusako, "Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 2103-2110, 2011.
doi:10.1109/TAP.2011.2143656

6. Sarabandi, K., A. M. Buerkle, and H. Mosallaei, "Compact wideband UHF patch antenna on a reactive impedance substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 503-506, 2006.
doi:10.1109/LAWP.2006.886302

7. Yang, F. and Y. Rahmat-Samii, "A low profile single dipole antenna radiating circularly polarized waves," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 3083-3086, 2005.
doi:10.1109/TAP.2005.854536

8. Agarwal, K., N. Nasimuddin, and A. Alphones, "Compact asymmetric slotted-slit patch based circularly-polarized antenna with reactive impedance surface substrate," Microwave and Optical Technology Letters, Vol. 54, No. 11, 2505-2510, 2012.
doi:10.1002/mop.27147

9. Dey, S., S. Mondal, and P. Sarkar, "Reactive impedance surface (RIS) based asymmetric slit patch antenna loaded with complementary split ring resonator (CSRR) for circular polarization," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 8, 1003-1013, Feb. 2019.
doi:10.1080/09205071.2019.1583608

10. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 9, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280

11. Rajanna, P. K. T., K. Rudramuni, and K. Kandasamy, "A high-gain circularly polarized antenna using zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1129-1133, 2019.
doi:10.1109/LAWP.2019.2910805

12. Meriche, M. A., H. Attia, A. Messai, S. S. I. Mitu, and T. A. Denidni, "Directive wideband cavity antenna with single-layer meta-superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1771-1774, 2019.
doi:10.1109/LAWP.2019.2929579

13. Budarapu, S. K., M. S. Sunder, and B. Ramakrishna, "Performance enhancement of patch antenna using RIS and metamaterial superstrate for wireless applications," Progress In Electromagnetics Research C, Vol. 130, 95-105, 2023.
doi:10.2528/PIERC22112603

14. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, 2013.
doi:10.1109/MAP.2013.6735515

15. Trentini, G. V., "Partially reflecting sheet arrays," IRE Transactions on Antennas and Propagation, Vol. 4, No. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455

16. Abdelghani, M. L., H. Attia, and T. A. Denidni, "Dual- and wideband fabry-perot resonator antenna for wlan applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 473-476, 2017.
doi:10.1109/LAWP.2016.2585087

17. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband fabry-perot resonator antenna with two complementary fss layers," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2463-2471, 2014.
doi:10.1109/TAP.2014.2308533

18. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3474-3481, 2014.
doi:10.1109/TAP.2014.2320755

19. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High-gain and high-aperture efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864