Vol. 138
Latest Volume
All Volumes
PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-10-02
A Novel Square Array Reflector Plate Equipped Mushroom Cloud Patch Antenna
By
Progress In Electromagnetics Research C, Vol. 138, 65-78, 2023
Abstract
A Mushroom-Cloud-shaped wide slot Microstrip patch antenna (MC-MSPA) was discovered and proved to be a viable option for Wideband applications in this research study. The given antenna has a high radiation and wideband reflection coefficient of 134.47% from 1.15 GigaHz to 5.87 GigaHz for |S11|<-10 dB. This antenna has a peak gain of 6.47 dBi at 4.6 GigaHz and 6.1 dBi at 5 GigaHz, as well as an return loss of 47.37 dB at 1.88 GHz. MC-MSPA has optimised dimensions of 0.73λg×0.72λg×0.02λg. Furthermore, a reflecting surface of a 7×7 square-shaped array beneath the ground plane has been included to provide even higher gain and directivity. The proposed MC-MSPA+RP antenna has a fractional bandwidth of 63% with dual bands from 1.438 to 2.782 GigaHz and 38.89% from 3.964 to 5.878 GigaHz, with a peak gain of 9.657 dBi, maximum directivity of 10.44 dBi at 5 GigaHz, and maximum return loss of 54 dB at 4.9 GigaHz. Reflector plate electrical dimensions have been enhanced to 0.87λg×0.87λg×0.24λg. The proposed design improves gain and directivity, both of which are important for WLAN and Wi-MAX applications.
Citation
Maniram Ahirwar, and Virendra Singh Chaudhary, "A Novel Square Array Reflector Plate Equipped Mushroom Cloud Patch Antenna," Progress In Electromagnetics Research C, Vol. 138, 65-78, 2023.
doi:10.2528/PIERC23082003
References

1. Fang, D. G., Antenna Theory and Microstrip Antennas, 1st Ed., CRC Press, 2017.
doi:10.1201/b10302

2. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, Hoboken, NJ, 2005.

3. Yang, L., N.-W. Liu, Z.-Y. Zhang, G. Fu, Q.-Q. Liu, and S. Zuo, "A novel single feed omnidirectional circularly polarized antenna with wide AR bandwidth," Progress In Electromagnetics Research C, Vol. 51, 35-43, 2014.
doi:10.2528/PIERC14041402

4. Albooyeh, M., N. Kamjani, and M. Shobeyri, "A novel cross-slot geometry to improve impedance bandwidth of microstrip antennas," Progress In Electromagnetics Research Letters, Vol. 4, 63-72, 2008.
doi:10.2528/PIERL08050203

5. Das, U. and N. Jahan, "Dual band rectangular slotted electromagnetic band gap structure design for improving microstrip patch antenna performance," 2020 11th International Conference on Electrical and Computer Engineering (ICECE), 97-100, Dhaka, Bangladesh, Dec. 2020.

6. Guo, Q.-Y., Q. W. Lin, and H. Wong, "Directive beam radiation by a fresnel zone plate integrated partially reflective surface for millimeter-wave applications," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-3, Copenhagen, Denmark, Mar. 2020.

7. De Dieu Ntawangaheza, J., L. Sun, Y. Li, and Z. Xie, "Improving bandwidth, gain and aperture efficiency of patch antenna using hybrid AMC ground plane," Progress In Electromagnetics Research C, Vol. 103, 71-82, 2020.
doi:10.2528/PIERC20030903

8. Huang, J. and V. Jamnejad, "A microstrip array feed for land mobile satellite reflector antennas," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 153-158, Feb. 1989.
doi:10.1109/8.18701

9. Qiu, Y., H. Zheng, M. Wang, and E. Li, "Directivity of antenna enhanced by using metasurface structure," 2020 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT), 1-3, Tianjin, China, Aug. 2020.

10. Joshi, M. P., V. J. Gond, and J. J. Chopade, "Saw-tooth shaped sequentially rotated fractal boundary square microstrip patch antenna for wireless application," Progress In Electromagnetics Research Letters, Vol. 94, 109-115, 2020.
doi:10.2528/PIERL20092005

11. Hong, T., S.-T. Yu, W. Jiang, and S.-X. Gong, "Gain enhancement of the circularly polarized antenna by fractal technique," Microw. Opt. Technol. Lett., Vol. 55, No. 11, 2656-2659, Nov. 2013.
doi:10.1002/mop.27899

12. Nurhayati, N., A. Manicoba De-Oliveira, W. Chaihongsa, B. E. Sukoco, and A. K. Saleh, "A comparative study of some novel wideband tulip ower monopole antennas with modified patch and ground plane," Progress In Electromagnetics Research C, Vol. 112, 239-250, 2021.
doi:10.2528/PIERC21040707

13. Roy, S. and U. Chakraborty, "Gain enhancement of a dualband WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, Jul. 2018.
doi:10.1049/iet-com.2018.0170

14. Al-Gburi, A. J. A., I. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, 1-1, 2020.
doi:10.1109/ACCESS.2020.2995069

15. Gan, W., X. Lu, J. Yang, Z. Zhang, F. Liu, and S. Yang, "Design of the triple band micro-strip antenna with AMC reflector," 2020 Asia Conference on Computers and Communications (ACCC), 7-10, Singapore, Singapore, Sep. 2020.

16. Olawoye, T. O. and P. Kumar, "A high gain microstrip patch antenna with slotted ground plane for sub-6 GHz 5G communications," 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 1-6, Durban, South Africa, Aug. 2020.

17. Yuan, Y.-N., J.-J. Feng, and X.-L. Xi, "Design of wearable antenna with compact artificial magnetic conductor reflecting plate," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, Oct. 2017.

18. Chung, K. L. and S. Chaimool, "Broadside gain and bandwidth enhancement of microstrip patch antenna using a MNZ-metasurface," Microw. Opt. Technol. Lett., Vol. 54, No. 2, 529-532, Feb. 2012.
doi:10.1002/mop.26574

19. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengineering, Vol. 27, No. 2, 448-454, Jun. 2018.
doi:10.13164/re.2018.0448

20. Abdulhasan, R. A., R. Alias, K. N. Ramli, F. C. Seman, and R. A. AbdAlhameed, "High gain CPW-fed UWB planar monopole antennabased compact uniplanar frequency selective surface for microwave imaging," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 8, Aug. 2019.
doi:10.1002/mmce.21757

21. Yuan, Y., X. Xi, Y. Zhao, and , "Compact UWB FSS reflector for antenna gain enhancement," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1749-1755, Aug. 2019.
doi:10.1049/iet-map.2019.0083

22. Tahir, F. A., T. Arshad, S. Ullah, and J. A. Flint, "A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum," Microw. Opt. Technol. Lett., Vol. 59, No. 10, 2698-2704, Oct. 2017.
doi:10.1002/mop.30789

23. Madhav, B. T. P., A. V. Chaitanya, R. Jayaprada, and M. Pavani, "Circular monopole slotted antenna with FSS for high gain applications," ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 15, 7, 2016.

24. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially re ective surfaces with positive re ection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propagat., Vol. 60, No. 2, 743-750, Feb. 2012.
doi:10.1109/TAP.2011.2173113

25. Tian, H., J. Wang, D. Han, and X. Wang, "A gain-enhanced dual-band microstrip antenna using metasurface as superstrate configuration," ACES Journal, Mar. 2022.

26. Supreeyatitikul, N., A. Boonpoonga, and C. Phongcharoenpanich, "Z-shaped metasurface-based wideband circularly polarized Fabry-Perot Antenna for C-band satellite technology," IEEE Access, Vol. 10, 59428-59441, 2022.
doi:10.1109/ACCESS.2022.3179360