1. Fang, D. G., Antenna Theory and Microstrip Antennas, 1st Ed., CRC Press, 2017.
doi:10.1201/b10302
2. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, 2005.
3. Yang, L., N.-W. Liu, Z.-Y. Zhang, G. Fu, Q.-Q. Liu, and S. Zuo, "A novel single feed omnidirectional circularly polarized antenna with wide AR bandwidth," Progress In Electromagnetics Research C, Vol. 51, 35-43, 2014.
doi:10.2528/PIERC14041402
4. Albooyeh, M., N. Kamjani, and M. Shobeyri, "A novel cross-slot geometry to improve impedance bandwidth of microstrip antennas," Progress In Electromagnetics Research Letters, Vol. 4, 63-72, 2008.
doi:10.2528/PIERL08050203
5. Das, U. and N. Jahan, "Dual band rectangular slotted electromagnetic band gap structure design for improving microstrip patch antenna performance," 2020 11th International Conference on Electrical and Computer Engineering (ICECE), 97-100, Dhaka, Bangladesh, Dec. 2020.
6. Guo, Q.-Y., Q. W. Lin, and H. Wong, "Directive beam radiation by a fresnel zone plate integrated partially reflective surface for millimeter-wave applications," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-3, Copenhagen, Denmark, Mar. 2020.
7. De Dieu Ntawangaheza, J., L. Sun, Y. Li, and Z. Xie, "Improving bandwidth, gain and aperture efficiency of patch antenna using hybrid AMC ground plane," Progress In Electromagnetics Research C, Vol. 103, 71-82, 2020.
doi:10.2528/PIERC20030903
8. Huang, J. and V. Jamnejad, "A microstrip array feed for land mobile satellite reflector antennas," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 153-158, Feb. 1989.
doi:10.1109/8.18701
9. Qiu, Y., H. Zheng, M. Wang, and E. Li, "Directivity of antenna enhanced by using metasurface structure," 2020 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT), 1-3, Tianjin, China, Aug. 2020.
10. Joshi, M. P., V. J. Gond, and J. J. Chopade, "Saw-tooth shaped sequentially rotated fractal boundary square microstrip patch antenna for wireless application," Progress In Electromagnetics Research Letters, Vol. 94, 109-115, 2020.
doi:10.2528/PIERL20092005
11. Hong, T., S.-T. Yu, W. Jiang, and S.-X. Gong, "Gain enhancement of the circularly polarized antenna by fractal technique," Microw. Opt. Technol. Lett., Vol. 55, No. 11, 2656-2659, Nov. 2013.
doi:10.1002/mop.27899
12. Nurhayati, N., A. Manicoba De-Oliveira, W. Chaihongsa, B. E. Sukoco, and A. K. Saleh, "A comparative study of some novel wideband tulip ower monopole antennas with modified patch and ground plane," Progress In Electromagnetics Research C, Vol. 112, 239-250, 2021.
doi:10.2528/PIERC21040707
13. Roy, S. and U. Chakraborty, "Gain enhancement of a dualband WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, Jul. 2018.
doi:10.1049/iet-com.2018.0170
14. Al-Gburi, A. J. A., I. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, 1-1, 2020.
doi:10.1109/ACCESS.2020.2995069
15. Gan, W., X. Lu, J. Yang, Z. Zhang, F. Liu, and S. Yang, "Design of the triple band micro-strip antenna with AMC reflector," 2020 Asia Conference on Computers and Communications (ACCC), 7-10, Singapore, Singapore, Sep. 2020.
16. Olawoye, T. O. and P. Kumar, "A high gain microstrip patch antenna with slotted ground plane for sub-6 GHz 5G communications," 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 1-6, Durban, South Africa, Aug. 2020.
17. Yuan, Y.-N., J.-J. Feng, and X.-L. Xi, "Design of wearable antenna with compact artificial magnetic conductor reflecting plate," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, Oct. 2017.
18. Chung, K. L. and S. Chaimool, "Broadside gain and bandwidth enhancement of microstrip patch antenna using a MNZ-metasurface," Microw. Opt. Technol. Lett., Vol. 54, No. 2, 529-532, Feb. 2012.
doi:10.1002/mop.26574
19. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengineering, Vol. 27, No. 2, 448-454, Jun. 2018.
doi:10.13164/re.2018.0448
20. Abdulhasan, R. A., R. Alias, K. N. Ramli, F. C. Seman, and R. A. AbdAlhameed, "High gain CPW-fed UWB planar monopole antennabased compact uniplanar frequency selective surface for microwave imaging," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 8, Aug. 2019.
doi:10.1002/mmce.21757
21. Yuan, Y., X. Xi, Y. Zhao, and , "Compact UWB FSS reflector for antenna gain enhancement," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1749-1755, Aug. 2019.
doi:10.1049/iet-map.2019.0083
22. Tahir, F. A., T. Arshad, S. Ullah, and J. A. Flint, "A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum," Microw. Opt. Technol. Lett., Vol. 59, No. 10, 2698-2704, Oct. 2017.
doi:10.1002/mop.30789
23. Madhav, B. T. P., A. V. Chaitanya, R. Jayaprada, and M. Pavani, "Circular monopole slotted antenna with FSS for high gain applications," ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 15, 7, 2016.
24. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially re ective surfaces with positive re ection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propagat., Vol. 60, No. 2, 743-750, Feb. 2012.
doi:10.1109/TAP.2011.2173113
25. Tian, H., J. Wang, D. Han, and X. Wang, "A gain-enhanced dual-band microstrip antenna using metasurface as superstrate configuration," ACES Journal, Mar. 2022.
26. Supreeyatitikul, N., A. Boonpoonga, and C. Phongcharoenpanich, "Z-shaped metasurface-based wideband circularly polarized Fabry-Perot Antenna for C-band satellite technology," IEEE Access, Vol. 10, 59428-59441, 2022.
doi:10.1109/ACCESS.2022.3179360