1. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, 1995.
doi:10.1049/el:19950950
2. Wong, K.-L. and W.-H. Hsu, "Broadband triangular microstrip antenna with U-shaped slot," Electronics Letters, Vol. 33, No. 25, 2085-2087, 1997.
doi:10.1049/el:19971472
3. Guo, Y. X., K. M. Luk, and K. F. Lee, "L-probe proximity-fed short-circuited patch antennas," Electronics Letters, Vol. 35, No. 24, 2069-2070, 1999.
doi:10.1049/el:19991446
4. Tong, K. F., K. M. Luk, K. F. Lee, and R. Q. Lee, "A broad-band U-slot rectangular patch antenna on a microwave substrate," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 954-960, 2000.
doi:10.1109/8.865229
5. Yen, M.-H., P. Hsu, and J.-F. Kiang, "Analysis of a CPW-fed slot ring antenna," Proc. APMC 2001 Int. Conf., 1267-1270, 2001.
6. Tehrani, H. and K. Chang, "Multifrequency operation of microstrip-fed slot-ring antennas on thin low-dielectric permittivity substrates," IEEE Trans. Antennas Propag., Vol. 50, No. 9, 1299-1308, Sep. 2002.
doi:10.1109/TAP.2002.800697
7. Gao, G.-P., B. Hu, and J.-S. Zhang, "Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 567-570, May 2013.
doi:10.1109/LAWP.2013.2259790
8. Li, Z., "Miniaturized design of a CPW-fed slot antennas using slits," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Oct. 2017.
9. Ripin, N., A. A. Sulaiman, N. Emileen, et al. "Miniaturization of printed monopole antenna through fractal geometry and partial cutting methods for UHF application," 2015 International Conference on Computer, Communications, and Control Technology (I4CT), Apr. 2015.
10. Salih, A. A. and M. S. Sharawi, "A dual band highly miniaturized patch antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 1783-1786, Mar. 2016.
doi:10.1109/LAWP.2016.2536678
11. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199
12. Chu, L. J., "Physical limitations on omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038
13. Hansen, R. C., "Fundamental limitations in antennas," Proc. IEEE, Vol. 69, 170-182, Feb. 1981.
doi:10.1109/PROC.1981.11950
14. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, 672-676, May 1996.
doi:10.1109/8.496253
15. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455
16. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828
17. Foroozesh, N. A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702
18. Alexopoulos, N. and D. Jackson, "Fundamental superstrate (cover) effect on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433
19. Lee, R. Q. and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1298-1302, Aug. 1990.
doi:10.1109/8.56971
20. Egashira, S. and E. Nishiyama, "Stacked microstrip antenna with wide bandwidth and high gain," IEEE Trans. Antennas Propag., Vol. 44, No. 11, 1533-1534, Nov. 1996.
doi:10.1109/8.542079
21. Jagtap, S. D., R. K. Gupta, N. Chaskar, S. U. Kharche, and R. Thakare, "Gain and bandwidth enhancement of circularly polarized MSA using PRS and AMC layers," Progress In Electromagnetics Research C, Vol. 87, 107-118, 2018.
doi:10.2528/PIERC18072205
22. Mehta, A. M., S. B. Deosarkar, and A. B. Nandgaonkar, "Gain and bandwidth enhancement of a CPW-fed bidirectional dumbbell shaped slot antenna using PRS," Progress In Electromagnetics Research Letters, Vol. 107, 159-167, 2022.
doi:10.2528/PIERL22091504
23. Vaidya, A. R., R. K. Gupta, S. K. Mishra, et al. "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas and Wireless Propag. Lett., Vol. 13, 431-434, Mar. 2014.
doi:10.1109/LAWP.2014.2308926
24. Jagtap, S., C. Anjali, and C. Nayana, et al., "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas and Wireless Propag. Lett., Vol. 17, 509-512, Mar. 2018.
doi:10.1109/LAWP.2018.2799873
25. Foroozesh, A. and L. Shafai, "2-D truncated periodic leaky-wave antennas with reactive impedance surface ground," Proc. IEEE AP-S Int. Symp., 15-18, Albuquerque, NM, Jul. 9-14, 2006.
26. Liao, H.-P. and S.-Y. Chen, "Bandwidth and gain enhancement of CPW-fed slot antenna using a partially re ective surface formed by two-step tapered dipole unit cells," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019.
27. Zhou, E., Y. Cheng, F. Chen, H. Luo, and X. Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/PIER22062201
28. Kumar, A., A. De, and R. K. Jain, "Gain enhancement using modified circular loop FSS loaded with slot antenna for sub-6 GHz 5G application," Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
doi:10.2528/PIERL21031108
29. Paik, H., S. K. Mishra, C. M. Sai Kumar, and K. Premchand, "High performance CPW fed printed antenna with double layered frequency selective surface reflector for bandwidth and gain improvement," Progress In Electromagnetics Research Letters, Vol. 102, 47-55, 2022.
doi:10.2528/PIERL21101703
30. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, e22505, Nov. 2020.
31. Cheng, Y.-F., X. Ding, X. Xu, X. Zhong, and C. Liao, "Design and analysis of a bow-tie slot-coupled wideband metasurface antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 18, No. 7, 1342-1346, Jul. 2019.
doi:10.1109/LAWP.2019.2916380
32. Kanjanasit, K. and C. Wang, "A wideband resonant cavity antenna assembled using a micromachined CPW-fed patch source and a two-layer metamaterial superstrate," IEEE Trans. on Components, Packaging and Manufacturing Tech., Vol. 9, No. 6, 1142-1150, Jun. 2019.
doi:10.1109/TCPMT.2018.2870479
33. Nikolova, N. K., M. Ravan, and R. K. Amineh, "Chapter Six --- Substrate integrated antennas on silicon," Advances in Imaging and Electron Physics, Vol. 174, 391-458, 2012.
doi:10.1016/B978-0-12-394298-2.00006-5
34. Ethier, J. L. T. and D. A. McNamara, "Modal significance measure in characteristic mode analysis of radiating structures," Electronics Letters, Vol. 46, No. 2, 107-108, Jan. 2010.
doi:10.1049/el.2010.1245
35. Newman, E. H., "Small antenna location synthesis using characteristic modes," IEEE Trans. Antennas Propag., Vol. 27, No. 4, 530-531, Jul. 1979.
doi:10.1109/TAP.1979.1142116
36. Fang, S., L. Zhang, Y. Guan, et al. "A wideband Fabry-Perot cavity antenna with single-layer partially reflective surface," IEEE Antennas and Wireless Propag. Lett., Vol. 22, 412-416, Feb. 2023.
doi:10.1109/LAWP.2022.3214230