Vol. 137
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-13
Design and Development of CPW-Fed Miniaturized MSA for Improved Gain, Bandwidth and Efficiency Using PRS
By
Progress In Electromagnetics Research C, Vol. 137, 211-222, 2023
Abstract
A Coplanar Waveguide (CPW) fed antenna with a T-type slot and Partially Reflecting Surface (PRS) for gain, bandwidth, and efficiency improvement is presented. The antenna is miniaturized to get size reduction of 46.50%. The miniaturized antenna covers frequencies in C band. The presented antenna structure is easy to design and has size of 0.682λg x 0.99λg x 0.053λg. The PRS with parasitic patches is placed on top of the antenna at a distance of 0.25λg. The presented antenna design has a bandwidth of 4.42 GHz (Antenna~1) and 3.87 GHz (Antenna~2) with a percentage bandwidth of 75.81% and 59.58% respectively having average radiation efficiency above 90%. The gains obtained are 7.03 dBi and 6.12 dBi for Antenna~1 and Antenna~2. The gain has < 3 dB variation over the complete band. The obtained results support the design and make the antenna suitable for C band applications.
Citation
Ameet M. Mehta, Shankar B. Deosarkar, and Anil Bapusa Nandgaonkar, "Design and Development of CPW-Fed Miniaturized MSA for Improved Gain, Bandwidth and Efficiency Using PRS," Progress In Electromagnetics Research C, Vol. 137, 211-222, 2023.
doi:10.2528/PIERC23071403
References

1. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, 1995.
doi:10.1049/el:19950950

2. Wong, K.-L. and W.-H. Hsu, "Broadband triangular microstrip antenna with U-shaped slot," Electronics Letters, Vol. 33, No. 25, 2085-2087, 1997.
doi:10.1049/el:19971472

3. Guo, Y. X., K. M. Luk, and K. F. Lee, "L-probe proximity-fed short-circuited patch antennas," Electronics Letters, Vol. 35, No. 24, 2069-2070, 1999.
doi:10.1049/el:19991446

4. Tong, K. F., K. M. Luk, K. F. Lee, and R. Q. Lee, "A broad-band U-slot rectangular patch antenna on a microwave substrate," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 954-960, 2000.
doi:10.1109/8.865229

5. Yen, M.-H., P. Hsu, and J.-F. Kiang, "Analysis of a CPW-fed slot ring antenna," Proc. APMC 2001 Int. Conf., 1267-1270, 2001.

6. Tehrani, H. and K. Chang, "Multifrequency operation of microstrip-fed slot-ring antennas on thin low-dielectric permittivity substrates," IEEE Trans. Antennas Propag., Vol. 50, No. 9, 1299-1308, Sep. 2002.
doi:10.1109/TAP.2002.800697

7. Gao, G.-P., B. Hu, and J.-S. Zhang, "Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 567-570, May 2013.
doi:10.1109/LAWP.2013.2259790

8. Li, Z., "Miniaturized design of a CPW-fed slot antennas using slits," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Oct. 2017.

9. Ripin, N., A. A. Sulaiman, N. Emileen, et al. "Miniaturization of printed monopole antenna through fractal geometry and partial cutting methods for UHF application," 2015 International Conference on Computer, Communications, and Control Technology (I4CT), Apr. 2015.

10. Salih, A. A. and M. S. Sharawi, "A dual band highly miniaturized patch antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 1783-1786, Mar. 2016.
doi:10.1109/LAWP.2016.2536678

11. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199

12. Chu, L. J., "Physical limitations on omnidirectional antennas," J. Appl. Phys., Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038

13. Hansen, R. C., "Fundamental limitations in antennas," Proc. IEEE, Vol. 69, 170-182, Feb. 1981.
doi:10.1109/PROC.1981.11950

14. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, 672-676, May 1996.
doi:10.1109/8.496253

15. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455

16. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

17. Foroozesh, N. A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702

18. Alexopoulos, N. and D. Jackson, "Fundamental superstrate (cover) effect on printed circuit antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433

19. Lee, R. Q. and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1298-1302, Aug. 1990.
doi:10.1109/8.56971

20. Egashira, S. and E. Nishiyama, "Stacked microstrip antenna with wide bandwidth and high gain," IEEE Trans. Antennas Propag., Vol. 44, No. 11, 1533-1534, Nov. 1996.
doi:10.1109/8.542079

21. Jagtap, S. D., R. K. Gupta, N. Chaskar, S. U. Kharche, and R. Thakare, "Gain and bandwidth enhancement of circularly polarized MSA using PRS and AMC layers," Progress In Electromagnetics Research C, Vol. 87, 107-118, 2018.
doi:10.2528/PIERC18072205

22. Mehta, A. M., S. B. Deosarkar, and A. B. Nandgaonkar, "Gain and bandwidth enhancement of a CPW-fed bidirectional dumbbell shaped slot antenna using PRS," Progress In Electromagnetics Research Letters, Vol. 107, 159-167, 2022.
doi:10.2528/PIERL22091504

23. Vaidya, A. R., R. K. Gupta, S. K. Mishra, et al. "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas and Wireless Propag. Lett., Vol. 13, 431-434, Mar. 2014.
doi:10.1109/LAWP.2014.2308926

24. Jagtap, S., C. Anjali, and C. Nayana, et al., "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas and Wireless Propag. Lett., Vol. 17, 509-512, Mar. 2018.
doi:10.1109/LAWP.2018.2799873

25. Foroozesh, A. and L. Shafai, "2-D truncated periodic leaky-wave antennas with reactive impedance surface ground," Proc. IEEE AP-S Int. Symp., 15-18, Albuquerque, NM, Jul. 9-14, 2006.

26. Liao, H.-P. and S.-Y. Chen, "Bandwidth and gain enhancement of CPW-fed slot antenna using a partially re ective surface formed by two-step tapered dipole unit cells," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019.

27. Zhou, E., Y. Cheng, F. Chen, H. Luo, and X. Li, "Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface," Progress In Electromagnetics Research, Vol. 175, 91-104, 2022.
doi:10.2528/PIER22062201

28. Kumar, A., A. De, and R. K. Jain, "Gain enhancement using modified circular loop FSS loaded with slot antenna for sub-6 GHz 5G application," Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
doi:10.2528/PIERL21031108

29. Paik, H., S. K. Mishra, C. M. Sai Kumar, and K. Premchand, "High performance CPW fed printed antenna with double layered frequency selective surface reflector for bandwidth and gain improvement," Progress In Electromagnetics Research Letters, Vol. 102, 47-55, 2022.
doi:10.2528/PIERL21101703

30. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, e22505, Nov. 2020.

31. Cheng, Y.-F., X. Ding, X. Xu, X. Zhong, and C. Liao, "Design and analysis of a bow-tie slot-coupled wideband metasurface antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 18, No. 7, 1342-1346, Jul. 2019.
doi:10.1109/LAWP.2019.2916380

32. Kanjanasit, K. and C. Wang, "A wideband resonant cavity antenna assembled using a micromachined CPW-fed patch source and a two-layer metamaterial superstrate," IEEE Trans. on Components, Packaging and Manufacturing Tech., Vol. 9, No. 6, 1142-1150, Jun. 2019.
doi:10.1109/TCPMT.2018.2870479

33. Nikolova, N. K., M. Ravan, and R. K. Amineh, "Chapter Six --- Substrate integrated antennas on silicon," Advances in Imaging and Electron Physics, Vol. 174, 391-458, 2012.
doi:10.1016/B978-0-12-394298-2.00006-5

34. Ethier, J. L. T. and D. A. McNamara, "Modal significance measure in characteristic mode analysis of radiating structures," Electronics Letters, Vol. 46, No. 2, 107-108, Jan. 2010.
doi:10.1049/el.2010.1245

35. Newman, E. H., "Small antenna location synthesis using characteristic modes," IEEE Trans. Antennas Propag., Vol. 27, No. 4, 530-531, Jul. 1979.
doi:10.1109/TAP.1979.1142116

36. Fang, S., L. Zhang, Y. Guan, et al. "A wideband Fabry-Perot cavity antenna with single-layer partially reflective surface," IEEE Antennas and Wireless Propag. Lett., Vol. 22, 412-416, Feb. 2023.
doi:10.1109/LAWP.2022.3214230