Vol. 137
Latest Volume
All Volumes
PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-19
Development of Novel and High Gain Microstrip Patch Antennas at Different Frequency Bands for 6G Applications
By
Progress In Electromagnetics Research C, Vol. 137, 263-275, 2023
Abstract
Wireless communications need antennas of different sizes, shapes, frequency-bands, bandwidths, and radiation patterns due to technical requirements, physical constraints, and FCC (Federal Communication Commission) regulations. For example, S-band antennas (2 GHz~4 GHz) are used in navigation, C-band antennas (4 GHz~8 GHz) used in Air-borne RADAR, X (8~12) band antennas used in Satellite communications, and millimeter wave (40 GHz and above) antennas used in autonomous vehicles. Ultrawide Band (UWB) antennas of different frequency bands have also applications in different fields such as medical imaging, radar imaging, software defined radios, surveillance, and health monitoring of different equipment. Microstrip patch antennas of different gains, bandwidths, shapes, and radiation patterns will play a vital role in different wireless applications of future 6G systems. In this paper, we have discussed different novel designs of patch antennas at different frequency bands: V-shaped patch antenna at 2.4 GHz, and hexagonal slotted half-circular patch antenna at 4.29 GHz. We have designed antennas of different shapes for different frequencies since some applications require UWB; some applications require narrow band but higher gain; and some applications require different gain/radiation patterns at the same frequency. We have designed a patch antenna at 2.4 GHz that can be used in Wi-Fi, and UWB patch at 4.29 GHz with omnidirectional radiation pattern that can be used in energy harvesting or biomedical applications. In this paper, we have also discussed the prototype development and testing results of the novel hexagonal slotted half-circular patch antenna at 4.29 GHz.
Citation
Niyaz Mahmud Sayem, Abul Kalam Muhammed Baki, Fahim Faysal, Sheikh Tanvi Mahmud, Ahmed Jubayer, and Tawsif Ahmed Rifat, "Development of Novel and High Gain Microstrip Patch Antennas at Different Frequency Bands for 6G Applications," Progress In Electromagnetics Research C, Vol. 137, 263-275, 2023.
doi:10.2528/PIERC23071302
References

1. Menon, S. K., G. Marchi, M. Donelli, M. Manekiya, and V. Mulloni, "Design of an ultra-wide band antenna based on a SIW resonator," Progress In Electromagnetic Research C, Vol. 103, 187-193, 2020.
doi:10.2528/PIERC20020405

2. Robol, F. and M. Donelli, "Circularly polarized monopole hook antenna for ISM-band systems," Microwave and Optical Technology Letters, Vol. 60, No. 6, 2018.

3. Massen, J., M. Frei, W. Menzel, and U. Moller, "A 79 GHz SiGe shortrange RADAR sensor for automotive applications," International Journal of Microwave and Wireless Technologies, 1-10, Cambridge University Press and the European Microwave Association, 2012.

4. Foysal, F., S. Mahmud, and A. K. M. Baki, "A novel and high gain antenna design for autonomous vehicles of 6G wireless systems," 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), 1-5, Miri, Malaysia, 2021.

5. Ruaro, A., J. Thaysen, and K. B. Jakobsen, "Wearable shell antenna for 2.4 GHz hearing instruments," IEEE Transactions on Antennas and Propagation, Vol. 64, 2127-2135, 2016.
doi:10.1109/TAP.2016.2543800

6. Howell, J. Q., "Microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 23, 90-93, 1975.
doi:10.1109/TAP.1975.1141009

7. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, 2nd Ed., Artechouse Publishing, Norwood, 2003.

8. Carver, K. R. and J. W. Mink, "Microstrip antenna theory," IEEE Transactions on Antennas and Propagation, Vol. 29, 2-25, 1981.
doi:10.1109/TAP.1981.1142523

9. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, 2005.

10. Kraus, J. D., R. J. Marhefka, and A. S. Khan, Antenna and Wave Propagation, Tata McGraw Hill Education Pvt. Ltd., 2010.

11. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley & Sons Inc., 2002.
doi:10.1002/0471221112

12. Lee, K. F., Principles of Antenna Theory, John Wiley & Sons Ltd, 1984.

13. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons Ltd, 1981.

14. Baki, A. K. M., N. U. Rahman, and S. K. Mondal, "Analysis of performance-improvement of microstrip antenna at 2.45 GHz through inset feed method," 1st International Conference on Advances in Science, Engineering and Robotics Technology 2019 (ICASERT 2019), Dhaka, Bangladesh, May 3-5, 2019.

15. Anusury, K., S. Dollapalli, H. Survi, A. Kothari, and P. Peshwe, "Microstrip patch antenna for 2.4 GHz using slotted ground plane," 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-6, Kanpur, India, 2019.

16. Rathore, S., R. Paulus, A. Agrawal, and A. K. Jaiswal, "Ultra-wideband antenna for WLAN, WiMAX and LTE applications," International Journal of Computer Applications (0975-8887), Vol. 121, No. 7, July 2015.

17. Kim, D.-O., N.-I. Jo, D.-M. Choi, and C.-Y. Kim, "Design of the ultrawide band antenna 5.2 GHz/5.8 GHz band rejection using rectangular Split-Ring Resonators (SRRS) loading," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2503-2512, 2009.

18. Jones, Q., "What is the smart grid and how is it enabled by the IoT,", April, 2020 (https://www.digi.com/blog/post/what-is-the-smart-grid-and-how-enabled-by-iot).

19. Tang, Z., C. Li, X. Cheng, W. Wang. J. Li, and J. Li, "Partial discharge location in power transformer using wideband RF detection," IEEE Trans. Dielect. Elect. Insu., Vol. 13, No. 6, 1193-1199, December 2006.
doi:10.1109/TDEI.2006.258190

20. Latif, S. S. and A. K. M. Baki, "Development of partial-discharge-emulator for smart grid monitoring system," IEEE International Conference on Smart Energy Grid Engineering (SEGE 2015), Ontario, Canada, August 17-19, 2015.

21. Baki, A. K. M., "Continuous monitoring of smart grid devices through multi-protocol label switching," IEEE Transaction on Smart Grid, Vol. 5, No. 3, 1210-1215, May 2014.
doi:10.1109/TSG.2014.2301723

22. ISO/IEC "IEC/TS 62478:2016, High-voltage test techniques --- Measurement of partial discharge by electromagnetic and acoustic methods,", August 19, 2016.

23. Marchal, A., M. Monedero, P. Le Thuc, and R. Staraj, "Ultra-wide band antenna for partial discharge detection inside switchgear for on-line monitoring," 2018 IEEE Conference on Antenna Measurements & Applications (CAMA), 2018.

24. Kawada, M., "Ultra wide band VHF/UHF radio interferometer system for detecting partial discharge source,", Ph.D. dissertation, Dept. Electrical Engineering, Osaka Univ. Osaka, Japan.

25. Ye, J., Q. Cao, and W.-Y. Tam, "Design and analysis of a miniature metamaterial microstrip patch antenna," 2011 International Workshop on Antenna Technology (iWAT), Hong Kong, China, 2011.

26. Honma, S. and N. Uehara, "Millimeter-wave RADAR technology for automotive application," Technical Reports, Mitsubishi Electric ADVANCE, 11-13, June 2001.

27. Chenji, H. and R. Stoleru, "Toward accurate mobile sensor network localization in noisy environments," IEEE Transactions on Mobile Computing, Vol. 12, 1094-1106, 2013.
doi:10.1109/TMC.2012.82

28. Foysal, M. F., S. Mahmud, and A. K. M. Baki, "A novel high gain array antenna design for autonomous vehicles of 6G wireless systems," 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), 1-5, Miri, Malaysia, 2021.

29. Lee, J. M. and K. C. Hwang, "Series feeding rectangular microstrip patch array antenna for 77 GHz automotive radar," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, Phuket, Thailand, 2017.

30. Chatterjee, S., "A 77 GHz BCB based high performance antenna array for autonomous vehicle radars," Electronic Theses and Dissertations, 7505, 2018.

31. Xu, J., W. Hong, and H. Zhang, "Low-profile patch array antenna with stable beam for 77 GHz automotive radar applications," International Symposium on Antennas and Propagation (ISAP), 1-3, Xi'an, China, 2019.

32. Ram, N., G. Hongmin, M. S. Sadiq, and A. Chand Bahadur, "77 GHz corporate feed series microstrip antenna array for the applications of automotive radar," 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-2, Xiamen, China, 2020.

33. Kaschel, H. and C. Ahumada, "Design of rectangular microstrip patch antenna for 2.4 GHz applied a WBAN," ICA-ACCA 2018, Greater Concepcion, Chile, October 17-19, 2018.

34. Priya, S., V. S. Rawat, V. K. Sonvani, and S. K. Vishwakarma, "Design of 2.4 GHz patch antenna with rectangular slot for WLAN application using SIW technique," 2021 Emerging Trends in Industry 4.0 (ETI 4.0), May 2021.

35. Swathi, P. and N. Nazeeya Anjum, "Design of microstrip patch antenna for 2.45 GHz wireless applications," Journal of Recent Research in Engineering and Technology, Vol. 2, No. 4, April 2015, ISSN (Online): 2349-2252, ISSN (Print): 2349-2260.

36. Karthick, M., "Design of 2.4 GHz patch antennae for WLAN applications," 2015 IEEE Seventh National Conference on Computing, Communication and Information Systems (NCCCIS), 2015, ISBN 978-1-4799-8990-4.

37. Asokan, V., S. Thilagam, and K. V. Kumar, "Design and analysis of microstrip patch antenna for 2.4 GHz ISM band and WLAN application," IEEE Sponsored 2Nd International Conference on Electronics and Communication System (ICECS 2015), 2015.

38. Sarma, A., K. Sarmah, and K. K. Sarma, "Low return loss slotted rectangular microstrip patch antenna at 2.4 GHz," 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 35-39, Noida, India, 2015.

39. Patil, S. B., R. D. Kanphade, and V. V. Ratnaparkhi, "Design and performance analysis of inset feed microstrip square patch antenna for 2.4 GHz wireless applications," 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 1194-1200, Coimbatore, India, 2015.

40. Tiwari, N., D. N. Nagwanshi, and S. Dwivedi, "Design of U-shape microstrip patch antenna for Bluetooth application at 2.4 GHz," International Journal of Innovation and Scientific Research, Vol. 6, No. 1, 92-99, 2014.

41. Kumar, R., J. P. Shinde, and M. D. Uplane, "Effect of slots in ground plane and patch on microstrip antenna performance," International Journal of Recent Trends in Engineering, Vol. 2, No. 6, November 2009.

42. Mobashsher, A. T. and A. M. Abbosh, "Performance of directional and omnidirectional antennas in wideband head imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1618-1621, 2016.
doi:10.1109/LAWP.2016.2519527