Vol. 138
Latest Volume
All Volumes
PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-23
Multi-Objective Optimization and Analysis of a Novel Permanent Magnet Synchronous Motor
By
Progress In Electromagnetics Research C, Vol. 138, 13-26, 2023
Abstract
In order to reduce the cogging torque and improve the back electromotive force (EMF) performance of the motor, a three-phase permanent magnet (PM) synchronous motor with magnetic pole eccentricity and slotting design is proposed in this paper. Firstly, the analytical expression for the cogging torque of the motor is derived based on the energy method, and the factors influencing cogging torque are analyzed. Subsequently, taking the cogging torque and the amplitude of the back EMF as the optimization objectives, the response surface method (RSM) and multi-objective genetic algorithm (MOGA) are combined to obtain the optimal values for the eccentricity distance of the PMs, slotting radius, and slot position. Finally, a finite element model is established for simulation comparison. The results show that compared with the traditional model, the optimized model effectively reduces the cogging torque while slightly sacrificing the back-EMF amplitude, and improves the sine degree of the no-load back-EMF.
Citation
Huajun Ran, Linfeng Wu, Wenbo Bai, Junye Zhao, and Yunpan Liu, "Multi-Objective Optimization and Analysis of a Novel Permanent Magnet Synchronous Motor," Progress In Electromagnetics Research C, Vol. 138, 13-26, 2023.
doi:10.2528/PIERC23071203
References

1. Chen, Y. and B. Liu, "Design and analysis of a five-phase fault-tolerant permanent magnet synchronous motor for aerospace starter-generator system," IEEE Access, Vol. 7, 135040-135049, 2019.
doi:10.1109/ACCESS.2019.2941447

2. Jing, L., W. Tang, T. Wang, T. Ben, and R. Qu, "Performance analysis of magnetically geared permanent magnet brushless motor for hybrid electric vehicles," IEEE Trans. Transp. Electrif., Vol. 8, No. 2, 2874-2883, 2022.
doi:10.1109/TTE.2022.3151681

3. Si, J., S. Zhao, L. Zhang, R. Cao, and W. Cao, "The characteristics analysis and cogging torque optimization of a surface-interior permanent magnet synchronous motor," Chinese Journal of Electrical Engineering, Vol. 4, No. 4, 41-47, 2018.
doi:10.23919/CJEE.2018.8606788

4. Tong, W., S. Li, X. Pan, S. Wu, and R. Tang, "Analytical model for cogging torque calculation in surface-mounted permanent magnet motors with rotor eccentricity and magnet defects," IEEE Trans. Energy Convers., Vol. 35, No. 4, 2191-2200, 2020.
doi:10.1109/TEC.2020.2995902

5. Ge, X., Z. Q. Zhu, G. Kemp, D. Moule, and C. Williams, "Optimal step-skew methods for cogging torque reduction accounting for three-dimensional effect of interior permanent magnet machines," IEEE Trans. Energy Convers., Vol. 32, No. 1, 222-232, 2016.
doi:10.1109/TEC.2016.2620476

6. Xia, C., Z. Chen, T. Shi, and H. Wang, "Cogging torque modeling and analyzing for surface-mounted permanent magnet machines with auxiliary slots," IEEE Trans. Magn., Vol. 49, No. 9, 5112-5123, 2013.
doi:10.1109/TMAG.2013.2256921

7. Lateb, R., N. Takorabet, and F. Meibody-Tabar, "Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors," IEEE Trans. Magn., Vol. 42, No. 3, 442-445, 2006.
doi:10.1109/TMAG.2005.862756

8. Scuiller, F., "Magnet shape optimization to reduce pulsating torque for a five-phase permanent-magnet low-speed machine," IEEE Trans. Magn., Vol. 50, No. 4, 1-9, 2013.
doi:10.1109/TMAG.2013.2287855

9. Chen, Q., H. Shu, and L. Chen, "Simulation analysis of cogging torque of permanent magnet synchronous motor for electric vehicle," J. Mech. Sci. Technol., Vol. 26, 4065-4071, 2012.
doi:10.1007/s12206-012-0903-8

10. Lee, G. H., W. C. Choi, S. I. Kim, et al. "Torque ripple minimization control of permanent magnet synchronous motors for EPS applications," Int. J. Automot. Technol., Vol. 12, 291-297, 2011.
doi:10.1007/s12239-011-0034-8

11. Hasanien, H. M., "Torque ripple minimization of permanent magnet synchronous motor using digital observer controller," Energy Conv. Manag., Vol. 51, No. 1, 98-104, 2010.
doi:10.1016/j.enconman.2009.08.027

12. Yu, J. and C. Liu, "Multi-objective optimization of a double-stator hybrid-excited flux-switching permanent-magnet machine," IEEE Trans. Energy Convers., Vol. 35, No. 1, 312-323, 2019.
doi:10.1109/TEC.2019.2932953

13. Jing, L., W. Liu, W. Tang, and R. Qu, "Design and optimization of coaxial magnetic gear with double-layer PMs and spoke structure for tidal power generation," IEEE-ASME Trans. Mechatron., 2023.

14. Guazzelli, P. R. U., W. C. de Andrade Pereira, C. M. R. de Oliveira, A. G. de Castro, and M. L. de Aguiar, "Weighting factors optimization of predictive torque control of induction motor by multi objective genetic algorithm," IEEE Trans. Power Electron., Vol. 34, No. 7, 6628-6638, 2019.
doi:10.1109/TPEL.2018.2834304

15. Zhang, H., W. Hua, and G. Zhang, "Analysis of back-EMF waveform of a novel outer-rotor-permanent-magnet flux-switching machine," IEEE Trans. Magn., Vol. 53, No. 6, 1-4, 2017.