Vol. 137
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-14
Hybrid-Vector Model Predictive Flux Control for PMSM Considering Narrow Pulse
By
Progress In Electromagnetics Research C, Vol. 137, 235-249, 2023
Abstract
Multi-vector model predictive control (MPC) of permanent magnet synchronous motors (PMSM) has two issues: selecting the optimal voltage vector (VV) combination is very complicated, and multiple prediction calculations to minimize the cost function result in a heavy computational burden; applying a VV with a short duration may generate narrow pulses, while the effect of reducing torque ripples and stator current harmonics is not obvious. The hybrid-vector model prediction flux control (HV-MPFC) strategy considering narrow pulse suppression is proposed in this paper. First, the optimal VV combination is quickly identified by the sector where the stator flux error vector is located, which lowers the control complexity and computational burden. Secondly, by the relationship between the action time of three VVs and the set time threshold, the hybrid-vector strategy to switch among three VVs, two VVs, and a single VV is employed to prevent the generation of narrow pulses. Finally, experimental results show that, compared with the existing three-vector MPC strategy, the HV-MPFC strategy effectively suppresses the generation of narrow pulses and achieves smaller torque ripples and stator current harmonics at the same switching frequency.
Citation
Qianghui Xiao, Zhi Yu, Wenting Zhang, Zhongjian Tang, and Zhun Cheng, "Hybrid-Vector Model Predictive Flux Control for PMSM Considering Narrow Pulse," Progress In Electromagnetics Research C, Vol. 137, 235-249, 2023.
doi:10.2528/PIERC23070201
References

1. Bi, G., Q. Wang, D. Ding, et al. "Multi-optimization objective online tracking-based parameter self- tuning method for sensorless PMSM drives," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 1390-1402, Mar. 2023.
doi:10.1109/TTE.2022.3200368

2. Zhang, R., Z. Yin, N. Du, J. Liu, and X. Tong, "Robust adaptive current control of a 1.2-MW direct-drive PMSM for traction drives based on internal model control with disturbance observer," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1466-1481, Sept. 2021.
doi:10.1109/TTE.2021.3058012

3. Murshid, S. and B. Singh, "Implementation of PMSM drive for a solar water pumping system," IEEE Transactions on Industry Applications, Vol. 55, No. 5, 4956-4964, Sept.-Oct. 2019.
doi:10.1109/TIA.2019.2924401

4. Wang, G., M. Valla, and J. Solsona, "Position sensorless permanent magnet synchronous machine drives --- A review," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5830-5842, Jul. 2020.
doi:10.1109/TIE.2019.2955409

5. Wang, W., H. Yan, Y. Xu, et al. "New three-phase current reconstruction for PMSM drive with hybrid space vector pulsewidth modulation technique," IEEE Transactions on Power Electronics, Vol. 36, No. 1, 662-673, Jan. 2021.
doi:10.1109/TPEL.2020.2997986

6. Casadei, D., F. Profumo, G. Serra, and A. Tani, "FOC and DTC: two viable schemes for induction motors torque control," IEEE Transactions on Power Electronics, Vol. 17, No. 5, 779-787, Sept. 2002.
doi:10.1109/TPEL.2002.802183

7. Zhang, X. and Y. He, "Direct voltage-selection based model predictive direct speed control for PMSM drives without weighting factor," IEEE Transactions on Power Electronics, Vol. 34, No. 8, 7838-7851, Aug. 2019.
doi:10.1109/TPEL.2018.2880906

8. Yu, F., S. Zhao, Z. Tian, and X. Wu, "Model predictive flux control of semicontrolled open-winding PMSG with circulating current elimination," IEEE Transactions on Industrial Informatics, Vol. 17, No. 2, 1438-1448, Feb. 2021.
doi:10.1109/TII.2020.2994086

9. Ge, L., J. Zhong, J. Huang, N. Jiao, S. Song, and R. W. De Doncker, "A novel model predictive torque control of SRMs with low measurement effort," IEEE Transactions on Industrial Electronics, Vol. 70, No. 4, 3561-3570, Apr. 2023.
doi:10.1109/TIE.2022.3179564

10. Zhang, Y., D. Xu, and L. Huang, "Generalized multiple-vector-based model predictive control for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 65, No. 12, 9356-9366, Dec. 2018.
doi:10.1109/TIE.2018.2813994

11. Zhang, X. and B. Hou, "Double vectors model predictive torque control without weighting factor based on voltage tracking error," IEEE Transactions on Power Electronics, Vol. 33, No. 3, 2368-2380, Mar. 2018.
doi:10.1109/TPEL.2017.2691776

12. Osman, I., D. Xiao, K. S. Alam, S. M. S. I. Shakib, M. P. Akter, and M. F. Rahman, "Discrete space vector modulation-based model predictive torque control with no suboptimization," IEEE Transactions on Industrial Electronics, Vol. 67, No. 10, 8164-8174, Oct. 2020.
doi:10.1109/TIE.2019.2946559

13. Zhang, X. and Z. Zhao, "Multi-stage series model predictive control for PMSM drives," IEEE Transactions on Vehicular Technology, Vol. 70, No. 7, 6591-6600, Jul. 2021.
doi:10.1109/TVT.2021.3086532

14. Sun, X., T. Li, M. Yao, G. Lei, Y. Guo, and J. Zhu, "Improved finite-control-set model predictive control with virtual vectors for PMSHM drives," IEEE Transactions on Energy Conversion, Vol. 37, No. 3, 1885-1894, Sept. 2022.

15. Zhang, Y., D. Xu, J. Liu, S. Gao, and W. Xu, "Performance improvement of model-predictive current control of permanent magnet synchronous motor drives," IEEE Transactions on Industry Applications, Vol. 53, No. 4, 3683-3695, Jul.-Aug. 2017.
doi:10.1109/TIA.2017.2690998

16. Zhao, W., H. Wang, T. Tao, and D. Xu, "Model Predictive torque control of five-phase PMSM by using double virtual voltage vectors based on geometric principle," IEEE Transactions on Transportation Electrification, Vol. 7, No. 4, 2635-2644, Dec. 2021.
doi:10.1109/TTE.2021.3063193

17. Kang, S.-W., J.-H. Soh, and R.-Y. Kim, "Symmetrical three-vector-based model predictive control with deadbeat solution for IPMSM in rotating reference frame," IEEE Transactions on Industrial Electronics, Vol. 67, No. 1, 159-168, Jan. 2020.
doi:10.1109/TIE.2018.2890490

18. Wang, C., J. Ji, H. Tang, T. Tao, and W. Zhao, "Improved model predictive current control for linear vernier permanent-magnet motor with efficient voltage vectors selection," IEEE Transactions on Industrial Electronics, Vol. 70, No. 3, 2833-2842, Mar. 2023.
doi:10.1109/TIE.2022.3169827

19. Yu, F., K. Li, Z. Zhu, and X. Liu, "An over-modulated model predictive current control for permanent magnet synchronous motors," IEEE Access, Vol. 10, 40391-40401, 2022.
doi:10.1109/ACCESS.2022.3166511

20. Gu, M., Y. Yang, M. Fan, et al. "Finite control set model predictive torque control with reduced computation burden for PMSM based on discrete space vector modulation," IEEE Transactions on Energy Conversion, Vol. 38, No. 1, 703-712, Mar. 2023.
doi:10.1109/TEC.2022.3211569

21. Jin, T., H. Song, D. L. Mon-Nzongo, P. G. Ipoum-Ngome, H. Liao, and M. Zhu, "Virtual three-level model predictive flux control with reduced computational burden and switching frequency for induction motors," IEEE Transactions on Power Electronics, Vol. 38, No. 2, 1571-1582, Feb. 2023.
doi:10.1109/TPEL.2022.3210388

22. Li, X., Z. Xue, L. Zhang, and W. Hua, "A low-complexity three-vector-based model predictive torque control for SPMSM," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 13002-13012, Nov. 2021.
doi:10.1109/TPEL.2021.3079147

23. Xu, B., Q. Jiang, W. Ji, and S. Ding, "An improved three-vector-based model predictive current control method for surface-mounted PMSM drives," IEEE Transactions on Transportation Electrification, Vol. 8, No. 4, 4418-4430, Dec. 2022.
doi:10.1109/TTE.2022.3169515

24. Petkar, S. G. and V. K. Thippiripati, "Effective multivector-operated predictive current control of PMSM drive with reduced torque and flux ripple," IEEE Transactions on Transportation Electrification, Vol. 9, No. 2, 2217-2227, Jun. 2023.
doi:10.1109/TTE.2022.3218747

25. Amiri, M., J. Milimonfared, and D. A. Khaburi, "Predictive torque control implementation for induction motors based on discrete space vector modulation," IEEE Transactions on Industrial Electronics, Vol. 65, No. 9, 6881-6889, Sept. 2018.
doi:10.1109/TIE.2018.2795589

26. Wang, Y., X. Wang, W. Xie, et al. "Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 5, 3537-3547, May 2017.
doi:10.1109/TIE.2017.2652338

27. Yang, Y., H. Wen, M. Fan, M. Xie, and R. Chen, "Fast finite-switching-state model predictive control method without weighting factors for T-type three-level three-phase inverters," IEEE Transactions on Industrial Informatics, Vol. 15, No. 3, 1298-1310, Mar. 2019.
doi:10.1109/TII.2018.2815035

28. Park, D.-M. and K.-H. Kim, "Parameter-independent online compensation scheme for dead time and inverter nonlinearity in IPMSM drive through waveform analysis," IEEE Transactions on Industrial Electronics, Vol. 61, No. 2, 701-707, Feb. 2014.
doi:10.1109/TIE.2013.2251737

29. Leggate, D. and R. J. Kerkman, "Pulse-based dead-time compensator for PWM voltage inverters," IEEE Transactions on Industrial Electronics, Vol. 44, No. 2, 191-197, Apr. 1997.
doi:10.1109/41.564157

30. Li, X., Z. Xue, X. Yan, et al. "Voltage vector rapid screening-based three-vector model predictive torque control for permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 37, No. 7, 1666-1678, 2022.