Vol. 137
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-05
A Compact Four-Element Modified Annular Ring Antenna for 5G Applications
By
Progress In Electromagnetics Research C, Vol. 137, 169-183, 2023
Abstract
The article presents a low-profile quad-port dual-band printed antenna designed for 5G applications. The antenna is printed on a 58.6 mm x 58.6 mm FR4 substrate with a thickness of 0.8 mm. It operates in the 5G spectrum between 3.3 and 3.8 GHz, specifically in the n77 band, with a 10 dB bandwidth impedance. This flexible operating range allows the antenna to cover future frequency bands essential for 5G applications. The design of the antenna focuses on minimizing the distance between antenna components, which results in a significant improvement in isolation performance, greater than 14 dB. This improved isolation allows for a high radiation efficacy of 85% and an overall gain of approximately 4.8 dBi over the operating range. To evaluate the Multiple-Input Multiple-Output (MIMO) performance of the proposed antenna, the researchers developed additional MIMO metrics, including channel capacity, the Envelope Correlation Coefficient (ECC), and Channel Capacity Loss (CCL). These metrics help assess the antenna's ability to handle multiple signals and maintain good performance in MIMO systems. This study shows that the proposed antenna is suitable for a wide range of applications operating over multiple frequency bands. This makes it a promising candidate for 5G applications, as it covers the necessary frequency range and offers good MIMO performance. The antenna's low profile and compact size also make it suitable for various compact and portable 5G devices.
Citation
Chinnathambi Murugan, and Thandapani Kavitha, "A Compact Four-Element Modified Annular Ring Antenna for 5G Applications," Progress In Electromagnetics Research C, Vol. 137, 169-183, 2023.
doi:10.2528/PIERC23062803
References

1. Shereen, M. K., M. I. Khattak, and J. Nebhen, "A review of achieving frequency reconfiguration through switching in microstrip patch antennas for future 5G applications," Alexandria Engineering Journal, Vol. 61, No. 1, 29-40, Jan. 1, 2022.
doi:10.1016/j.aej.2021.04.105

2. Kim, G. and S. Kim, "Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmWave antenna module on FR4 substrate," IEEE Access, Vol. 9, 64306-64316, Apr. 26, 2021.

3. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

4. Haykin, S., "Cognitive radio: Brain-empowered wireless communications," IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, 201-220, Feb. 7, 2005.
doi:10.1109/JSAC.2004.839380

5. Tawk, Y., J. Costantine, and C. Christodoulou, Antenna Design for Cognitive Radio, Artech House, Jun. 30, 2016.

6. De Flaviis, F., L. Jofre, J. Romeu, and A. Grau, Multiantenna Systems for MIMO Communications, Springer Nature, May 31, 2022.

7. Varzakas, P., "Estimation of radio capacity of a spread spectrum cognitive radio Rayleigh fading system," Proceedings of the 17th Panhellenic Conference on Informatics, 63-66, Sep. 19, 2013.

8. Bakulin, M. G., V. B. Kreindelin, and D. Y. Pankratov, "Analysis of the capacity of MIMO channel in fading conditions," 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 1-6, IEEE, Jul. 4, 2018.

9. Chitra, M. P., S. Divya, M. Premkumar, V. Tamilselvi, and N. Karthika, "MIMO cognitive radio capacity in at fading channel," 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), 915-919, IEEE, Mar. 23, 2017.

10. Cheng, B. and Z. Du, "Dual polarization MIMO antenna for 5G mobile phone applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 4160-4165, Dec. 21, 2020.
doi:10.1109/TAP.2020.3044649

11. Chen, Y. S. and C. P. Chang, "Design of a four-element multiple-input-multiple-output antenna for compact long-term evolution small-cell base stations," IET Microwaves, Antennas & Propagation, Vol. 10, No. 4, 385-392, Mar. 2016.
doi:10.1049/iet-map.2015.0540

12. Chen, W. S. and K. H. Lai, "Compact design of MIMO antennas for LTE 700 application," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1148-1149, IEEE, Jul. 19, 2015.

13. Singh, H. S., G. K. Pandey, P. K. Bharti, and M. K. Meshram, "Compact printed diversity antenna for LTE700/GSM1700/1800/UMTS/Wi-Fi/Bluetooth/LTE2300/2500 applications for slim mobile handsets," Progress In Electromagnetics Research C, Vol. 56, 83-91, 2015.
doi:10.2528/PIERC14122601

14. Naser, A. A., K. Sayidmarie, and J. S. Aziz, "Compact high isolation meandered-line PIFA antenna for LTE (band-class-13) handset applications," Progress In Electromagnetics Research C, Vol. 67, 153-164, 2016.
doi:10.2528/PIERC16062006

15. Jan, M. A., D. N. Aloi, and M. S. Sharawi, "A 2 x 1 compact dual band MIMO antenna system for wireless handheld terminals," 2012 IEEE Radio and Wireless Symposium, 23-26, IEEE, Jan. 15, 2012.

16. Ikram, M., R. Hussain, A. Ghalib, and M. S. Sharawi, "Compact 4-element MIMO antenna with isolation enhancement for 4G LTE terminals," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 535-536, IEEE, Jun. 26, 2016.

17. Ikram, M. and M. S. Sharawi, "Compact 10-element monopole based MIMO antenna system for 4G mobile phones," 2016 16th Mediterranean Microwave Symposium (MMS), 1-2, IEEE, Nov. 14, 2016.

18. Shoaib, S., I. Shoaib, N. Shoaib, X. Chen, and C. Parini, "Compact and printed MIMO antennas for 2G/3G and 4G --- LTE mobile tablets," 2015 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 674-677, IEEE, Sep. 7, 2015.

19. Li, S., L. D. Xu, and S. Zhao, "The internet of things: A survey," Information Systems Frontiers, Vol. 17, 243-259, Apr. 2015.
doi:10.1007/s10796-014-9492-7

20. Zaman, M. R., R. Azim, N. Misran, M. F. Asillam, and T. Islam, "Development of a semielliptical partial ground plane antenna for RFID and GSM-900," International Journal of Antennas and Propagation, Vol. 2014, Article ID 693412, Jan. 1, 2014.

21. Bukhari, B., C. Singh, K. R. Jha, and S. K. Sharma, "Planar MIMO antennas for IoT and CR applications," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, IEEE, Dec. 19, 2017.

22. Bashir, U., K. R. Jha, G. Mishra, G. Singh, and S. K. Sharma, "Octahedron-shaped linearly polarized antenna for multistandard services including RFID and IoT," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3364-3373, May 17, 2017.
doi:10.1109/TAP.2017.2705097

23. Ebrahimi, E. and P. S. Hall, "A dual port wide-narrowband antenna for cognitive radio," 2009 3rd European Conference on Antennas and Propagation, 809-812, IEEE, Mar. 23, 2009.

24. Al-Husseini, M., Y. Tawk, C. G. Christodoulou, K. Y. Kabalan, and A. El Hajj, "A reconfigurable cognitive radio antenna design," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, IEEE, Jul. 11, 2010.

25. Tawk, Y., J. Costantine, K. Avery, and C. G. Christodoulou, "Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1773-1778, Mar. 3, 2011.
doi:10.1109/TAP.2011.2122239

26. Mansoul, A., F. Ghanem, M. R. Hamid, and M. Trabelsi, "A selective frequency-reconfigurable antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 515-518, Mar. 11, 2014.

27. Cao, Y., S. W. Cheung, X. L. Sun, and T. I. Yuk, "Frequency-reconfigurable monopole antenna with wide tuning range for cognitive radio," Microwave and Optical Technology Letters, Vol. 56, No. 1, 145-152, 2014.
doi:10.1002/mop.28070

28. Zheng, S. H., X. Y. Liu, and M. M. Tentzeris, "A novel optically controlled reconfigurable antenna for cognitive radio systems," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1246-1247, 2014.
doi:10.1109/APS.2014.6904950

29. Erfani, E., J. Nourinia, C. Ghobadi, M. Niroo-Jazi, and T. A. Denidni, "Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 77-80, 2012.
doi:10.1109/LAWP.2011.2182631

30. Srivastava, G., A. Mohan, and A. Chakrabarty, "Compact reconfigurable UWB slot antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1139-1142, 2016.

31. Nachouane, H., A. Najid, A. Tribak, and F. Riouch, "Dual port antenna combining sensing and communication tasks for cognitive radio," International Journal of Electronics and Telecommunications, Vol. 62, No. 2, 121-127, 2016.
doi:10.1515/eletel-2016-0016

32. Hu, Z. H., P. S. Hall, and P. Gardner, "Reconfigurable dipole-chassis antennas for small terminal MIMO applications," Electronics Letters, Vol. 47, No. 17, 953-955, 2011.
doi:10.1049/el.2011.1801

33. Chacko, B. P., G. Augustin, and T. A. Denidni, "Electronically reconfigurable uniplanar antenna with polarization diversity for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 213-216, 2015.
doi:10.1109/LAWP.2014.2360353

34. Cheng, S. P. and K. H. Lin, "A reconfigurable monopole MIMO antenna with wideband sensing capability for cognitive radio using varactor diodes," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2233-2234, 2015.
doi:10.1109/APS.2015.7305505

35. Tawk, Y., F. Ayoub, C. G. Christodoulou, and J. Costantine, "A MIMO cognitive radio antenna system," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 572-573, 2013.
doi:10.1109/APS.2013.6710946

36. Hussain, R. and M. S. Sharawi, "Integrated reconfigurable multiple-input-multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms," IET Microwaves, Antennas & Propagation, Vol. 9, No. 9, 940-947, 2015.
doi:10.1049/iet-map.2014.0605

37. Truncated Cube --- FromWolfram MathWorld 2017, , , http://mathworld.wolfram.com/TruncatedTetrahedron.html, Accessed Dec. 11, 2021.

38. Jha, K. R. and S. K. Sharma, "Combination of frequency agile and quasi-elliptical planar monopole antennas in MIMO implementations for handheld devices," IEEE Antennas Propagation Mag., Vol. 60, 118-131, 2018.
doi:10.1109/MAP.2017.2774198

39. Preradov, D. and D. N. Aloi, "Cross polarized 2 x 2 LTE MIMO system for automotive shark fin application," Applied Computational Electromagnetics Society, Vol. 35, No. 10, 1207-1216, 2020.
doi:10.47037/2020.ACES.J.351014

40. Goncharova, I. and S. Lindenmeier, "A high efficient automotive roof-antenna concept for LTE, DAB-L, GNSS and SDARS with low mutual coupling," Proceedings of the 2015 9th European Conference on Antennas and Propagation, EuCAP, 1-5, Lisbon, Portugal, Apr. 2015.

41. Khalifa, M. O., A. M. Yacoub, and D. N. Aloi, "A multiwideband compact antenna design for vehicular sub-6 GHz 5G wireless systems," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8136-8142, Dec. 2021.
doi:10.1109/TAP.2021.3083770

42. Yacoub, M., M. O. Khalifa, and D. N. Aloi, "Design of multi-wideband Automotive cell antenna for LTE and 5G applications," 2021 15th European Conference on Antennas and Propagation, EuCAP, 2021.

43. Sanz-Izquierdo, B., S. Jun, J. Heirons, and N. Acharya, "Inkjet printer and folded LTE antenna for vehicular application," Proceedings of the 2016 46th European Microwave Conference (EuMC), 88-91, London, UK, Oct. 2016.

44. Cheng, Y., J. Lu, and C. Wang, "Design of a multiple band vehicle-mounted antenna," International Journal of Antennas and Propagation, Vol. 2019, Article ID 6098014, 11 pages, 2019.

45. Preradov, D. and D. N. Aloi, "Cross polarized 2 x 2 LTE MIMO system for automotive shark fin application," Applied Computational Electromagnetics Society, Vol. 35, No. 10, 1207-1216, 2020.
doi:10.47037/2020.ACES.J.351014

46. Hasturkoglu, S. and S. Lindenmeier, "A wideband automotive antenna for actual and future mobile communication 5G/LTE/WLAN with low profile," Proceedings of the 2017 11th European Conference on Antennas and Propagation, EUCAP, 602-605, Paris, France, Mar. 2017.
doi:10.23919/EuCAP.2017.7928669

47. Iqbal, A., O. A. Saraereh, A. Bouazizi, and A. Basir, "Metamaterial-based highly isolated MIMO antenna for portable wireless applications," Electronics, Vol. 7, No. 10, 267, Oct. 22, 2018.
doi:10.3390/electronics7100267