Vol. 137
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-23
Systematic Performance Evaluation for the Detection of Breast Tumors with Sinusoidal Corrugated Antipodal Vivaldi Antennas Utilizing DAS and It-DAS Methodologies
By
Progress In Electromagnetics Research C, Vol. 137, 1-16, 2023
Abstract
This work presents a study where a Sinusoidal Corrugated Antipodal Vivaldi Antenna (SC-AVA) operating in the Ultra-Wideband (UWB) region is employed as a transducer for microwave imaging of a cancerous breast. The functionality of the antenna within the Ultra-Wideband (UWB) range is initially confirmed through thorough testing of performance parameters, including return loss, gain, radiation pattern, and group delay. Subsequently, its practical application in biomedical imaging is evaluated by measuring Specific Absorption Rate (SAR) readings at multiple frequencies within the operational range. The SAR readings are obtained from an EM simulator by modelling both homogeneous and heterogeneous breast phantoms and placing them in close proximity to the transducer. The SAR values are recorded at various frequencies, and it is determined that these readings comply with the Federal Communication Commission (FCC) regulations. The modelled SC-AVA is further utilized in the detection of a single tumor in a homogeneous breast phantom and multiple tumors in a realistic heterogeneous breast phantom. These phantoms are developed in a laboratory environment and imaged using an in-house developed monostatic microwave imaging setup. To gather preliminary information about the target, a homogeneous phantom with one tumor is imaged initially. Subsequently the heterogeneous phantom with two embedded tumorsis imaged in this study. The imaging results demonstrate that tumors of different sizes can be clearly visualized in both breast phantoms using the SC-AVA, employing image reconstruction algorithms such as Delay and Sum (DAS) and iterative Delay and Sum (it-DAS). Furthermore, a comparison of the reconstructed images reveals that the it-DAS reconstruction algorithm produces images with improved clarity compared to the DAS algorithm.
Citation
Athul O. Asok, Ayush Tripathi, and Sukomal Dey, "Systematic Performance Evaluation for the Detection of Breast Tumors with Sinusoidal Corrugated Antipodal Vivaldi Antennas Utilizing DAS and It-DAS Methodologies," Progress In Electromagnetics Research C, Vol. 137, 1-16, 2023.
doi:10.2528/PIERC23062705
References

1. Siegel, R., K. Miller, H. Fuchs, and A. Jemal, "Cancer statistics," CA Cancer J. Clin., Vol. 72, 7-33, 2022.
doi:10.3322/caac.21708

2. Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA Cancer J. Clin., Vol. 68, 394-424, 2018.
doi:10.3322/caac.21492

3. Molaei, A., A. Bisulco, L. Tirado, et al. "3-D-printed E-band compressive horn antenna for high-sensing-capacity imaging applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1639-1642, Sept. 2018.
doi:10.1109/LAWP.2018.2859912

4. Abbak, M., M. N. Akinci, M. Cayoren, and I. Akduman, "Experimental microwave imaging with a novel corrugated Vivaldi antenna," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3302-3307, Jun. 2017.
doi:10.1109/TAP.2017.2670228

5. Salvador, S. M., E. C. Fear, M. Okoniewski, and J. R. Matyas, "Exploring joint tissues with microwave imaging," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 8, 2307-2313, Aug. 2010.
doi:10.1109/TMTT.2010.2052662

6. Islam, M., M. Samsuzzaman, M. Islam, S. Kibria, and M. Singh, "A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor," Sensors, Vol. 18, No. 9, 2962, 2018.
doi:10.3390/s18092962

7. Porter, E., H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Trans. Med. Imag., Vol. 35, No. 6, 1501-1509, Jun. 2016.
doi:10.1109/TMI.2016.2518489

8. Islam, M. M., M. T. Islam, M. R. I. Faruque, M. Samsuzzaman, N. Misran, and H. Arshad, "Microwave imaging sensor using compact metamaterial UWB antenna with a high correlation factor," Materials, Vol. 8, No. 8, 4631-4651, 2015.
doi:10.3390/ma8084631

9. Moosazadeh, M., "High-gain antipodal vivaldi antenna surrounded by dielectric for wideband applications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4349-4352, Aug. 2018.
doi:10.1109/TAP.2018.2840839

10. Yesilyurt, O. and G. Turhan-Sayan, "Metasurface lens for ultra-wideband planar antenna," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 719-726, Feb. 2020.
doi:10.1109/TAP.2019.2940462

11. Sang, L., S. Wu, G. Liu, J. Wang, and W. Huang, "High-gain UWB Vivaldi antenna loaded with reconfigurable 3-D phase adjusting unit lens," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 2, 322-326, Feb. 2020.
doi:10.1109/LAWP.2019.2961393

12. Shi, X., Y. Lu, J. Shi, Y. Xiong, and X. Lou, "High-gain Vivaldi antipodal broadband antenna with a CSRR array and T-shaped strips," Proc. 9th Asia-Pacific Conf. Antennas Propag., 1-2, Xiamen, China, 2020.

13. Shi, X., Y. Cao, Y. Hu, X. Luo, H. Yang, and L. H. Ye, "A high-gain antipodal vivaldi antenna with director and metamaterial at 1-28 GHz," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 12, 2432-2436, Dec. 2021.
doi:10.1109/LAWP.2021.3114061

14. Asok, A. O., A. N. Jaleel, and S. Dey, "Microwave imaging over UWB with antipodal Vivaldi antenna for concealed weapon detection," 2020 IEEE MTT-S Latin America Microwave Conference (LAMC 2020), 1-4, 2021.

15. Talukder, M., M. Samsuzzaman, M. Islam, R. Azim, M. Mahmud, and M. Islam, "Compact ellipse shaped patch with ground slotted broadband monopole patch antenna for head imaging applications," Chinese Journal of Physics, Vol. 72, No. 5, 310-326, 2021.
doi:10.1016/j.cjph.2021.05.005

16. Islam, M. T., M. Samsuzzaman, S. Kibria, and M. T. Islam, "Experimental breast phantoms for estimation of breast tumor using microwave imaging systems," IEEE Access, Vol. 6, 78587-78597, 2018.
doi:10.1109/ACCESS.2018.2885087

17. Shepp, L. A. and Y. Vardi, "Maximum likelihood reconstruction for emission tomography," IEEE Trans. Med. Imag., Vol. 1, No. 2, 113-122, Oct. 1982.
doi:10.1109/TMI.1982.4307558

18. Lim, H. B., N. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-Sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, Jun. 2008.
doi:10.1109/TBME.2008.919716

19. Islam, M. T., M. Samsuzzaman, S. Kibria, N. Misran, and M. T. Islam, "Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm," Sci. Rep., Vol. 9, No. 1, 1-14, Dec. 2019.
doi:10.1038/s41598-018-37186-2

20. Islam, M. T., M. Z. Mahmud, M. T. Islam, S. Kibria, and M. Samsuzzaman, "A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array," Sci. Rep., Vol. 9, No. 1, 1-13, Dec. 2019.
doi:10.1038/s41598-018-37186-2

21. Islam, M., M. Samsuzzaman, M. Islam, S. Kibria, and M. Singh, "A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor," Sensors, Vol. 18, No. 9, 2962, 2018.
doi:10.3390/s18092962

22. Shao, W., A. Edalati, T. R. McCollough, and W. J. McCollough, "A time-domain measurement system for UWB microwave imaging," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 5, 2265-2275, 2018.
doi:10.1109/TMTT.2018.2801862

23. Mahmud, M. Z., M. T. Islam, N. Misran, S. Kibria, and M. Samsuzzaman, "Microwave imaging for breast tumor detection using uniplanar AMC based CPW-fed microstrip antenna," IEEE Access, Vol. 6, 44763-44775, 2018.
doi:10.1109/ACCESS.2018.2859434

24. Porter, E., H. Bahrami, A. Santorelli, et al. "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Trans. Med. Imag., Vol. 35, No. 6, 1501-1509, Jun. 2016.
doi:10.1109/TMI.2016.2518489

25. Zerrad, F.-E., M. Taouzari, E. M. Makroum, J. El Aoufi, M. T. Islam, V. Ozkaner, Y. I. Abdulkarim, and M. Karaaslan, "Multilayered meta-materials array antenna based on artificial magnetic conductor's structure for the application diagnostic breast cancer detection with microwave imaging," Med. Eng. Phys., Vol. 99, Art. No. 103737, Jan. 2022.
doi:10.1016/j.medengphy.2021.103737

26. Bhargava, D. and P. Rattanadecho, "Microstrip antenna for radar-based microwave imaging of breast cancer: Simulation analysis," Int. J. Commun. Antenna Propag., Vol. 12, 47-53, 2022.

27. Kaur, G. and A. Kaur, "Monostatic radar-based microwave imaging of breast tumor using an ultra-wideband Dielectric Resonator Antenna (DRA) with a Sierpinski fractal defected ground structure," MAPAN, Vol. 37, No. 4, 917-928, 2022.
doi:10.1007/s12647-022-00536-7

28. Syed, A., M. Sheikh, M. T. Islam, and H. Rmili, "Metamaterial-loaded 16-printed log periodic antenna array for microwave imaging of breast tumor detection," Int. J. Antennas Propag., 2022.

29. Dey, A. B. and W. Arif, "Design and analysis of a CPW-fed flexible ultrawideband antenna for microwave imaging of breast cancer," Int. J. RF Microw. Comput. Aided Eng., Vol. 32, No. 9, e23262, 2022.
doi:10.1002/mmce.23262

30. Abbak, M., M. Cayoren, and I. Akduman, "Microwave breast phantom measurements with a cavity-backed Vivaldi antenna," IET Microw., Antennas Propag., Vol. 8, No. 13, 1127-1133, Oct. 2014.
doi:10.1049/iet-map.2013.0484

31. Wu, B., Y. Ji, and G. Fang, "Design and measurement of compact tapered slot antenna for UWB microwave imaging radar," Proc. 9th Int. Conf. Electron. Meas. Instrum. (ICEMI), 2-226-2-229, 2009.

32. Islam, M. T., M. Z. Mahmud, N. Misran, J.-I. Takada, and M. Cho, "Microwave breast phantom measurement system with compact side slotted directional antenna," IEEE Access, Vol. 5, 5321-5330, 2017.
doi:10.1109/ACCESS.2017.2690671

33. Samsuzzaman, M., M. T. Islam, M. T. Islam, A. A. S. Shovon, R. I. Faruque, and N. Misran, "A 16-modified antipodal Vivaldi antenna array for microwave-based breast tumor imaging applications," Microw. Opt. Technol. Lett., Vol. 61, 2110-2118, 2019.
doi:10.1002/mop.31873

34. Porter, E., E. Kirshin, A. Santorelli, M. Coates, and M. Popovic, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas Wireless Propag. Lett., Vol. 12, 229-232, 2013.
doi:10.1109/LAWP.2013.2247374

35. Porter, E., H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, "A wearable microwave antenna array for time-domain breast tumor screening," IEEE Trans. Med. Imag., Vol. 35, No. 6, 1501-1509, Jun. 2016.
doi:10.1109/TMI.2016.2518489

36. Sugitani, T., S. Kubota, A. Toya, X. Xiao, and T. Kikkawa, "A compact 4 x 4 planar UWB antenna array for 3-D breast cancer detection," IEEE Antennas Wireless Propag. Lett., Vol. 12, 733-736, 2013.
doi:10.1109/LAWP.2013.2270933

37. Islam, M. T., M. Samsuzzaman, M. Faruque, M. J. Singh, and M. Islam, "Microwave imaging based breast tumor detection using compact wide slotted UWB patch antenna," Optoelectron. Adv. Mater. Rapid Commun., Vol. 13, 448-457, 2019.

38. Bhattacharjee, A., A. Bhawal, A. Karmakar, A. Saha, and D. Bhattacharya, "Vivaldi antennas: A historical review and current state of art," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 8, 833-850, 2021.
doi:10.1017/S1759078720001415

39. Asok, A. O., G. Nath, and S. Dey, "Microwave imaging with novel time-domain clutter removal algorithm using high gain antennas for concealed object detections," IEEE Transactions on Computational Imaging, Vol. 9, 147-158, 2023.
doi:10.1109/TCI.2023.3244392

40. Asok, A. O., S. J. G. Nath, and S. Dey, "Concealed object detection with microwave imaging using vivaldi antennas utilizing novel time-domain beamforming algorithm," IEEE Access, Vol. 10, 116987-117000, 2022.
doi:10.1109/ACCESS.2022.3218892

41. Asok, A. O., S. J. G. Nath, and S. Dey, "Non-invasive breast tumor detection with antipodal Vivaldi antenna using monostatic approach," Int. J. RF Microw. Comput. Aided Eng., e23539, 2022.

42. Asok, A. O., R. Anjaly, S. Dey, and N. Kunju, "Monopole antenna loaded with wind mill shaped FSS for breast tumor detection," 2023 First International Conference on Microwave, Antenna and Communication (MAC), 1-4, Prayagraj, India, 2023.

43. Asok, A. O., N. Kunju, and S. Dey, "Microwave medical imaging using a compact monopole antenna for brain tumor detection," 2023 First International Conference on Microwave, Antenna and Communication (MAC), 1-4, Prayagraj, India, 2023.

44. Asok, A. O., M. A. Shukoor, and S. Dey, "Breast cancer detection with metamerial enabled monopole antennas using microwave imaging," 2022 IEEE International Conference on Emerging Electronics (ICEE), 1-4, Bangalore, India, 2022.

45. Asok, A. O., S. J. Gokul Nath, S. J. Vidhya, N. Kunju, and S. Dey, "Brain tumor detection with compact monopole antennas using microwave medical imaging," 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 439-443, Bangalore, India, 2022.

46. Asok, A. O., J. S. Vidhya, N. Kunju, and S. Dey, "Wearable, conformal, compact and flexible F-slot monopole antenna on textile for non-invasive biomedical imaging," 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 465-470, Bangalore, India, 2022.

47. Asok, A. O., J. S. Vidhya, F. Bethel Babu, S. Dey, and N. Kunju, "Metamerial-based monopole antenna for breast cancer detection," 2022 IEEE 19th India Council International Conference (INDICON), 1-4, Kochi, India, 2022.

48. Asok, A. O., G. N. S. J. A. Tripathi, S. Chauhan, K. S. Kiran, and S. Dey, "Double ridge conical horn antenna with dielectric loading for microwave imaging of human breast," 2022 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1-4, Rourkela, India, 2022.

49. Nath, G. S. J., A. O. Asok, and S. Dey, "Metallic object detection inside human stomach with antipodal Vivaldi antenna utilizing microwave imaging technique," 2022 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1-4, Rourkela, India, 2022.

50. Asok, A. O., S. J. G. Nath, and S. Dey, "Double ridge horn antenna with curved dielectric loading for microwave imaging applications," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 167-170, Jaipur, Rajasthan, India, 2021.
doi:10.1109/InCAP52216.2021.9726351

51. Asok, A. O. and S. Dey, "UWB antipodal antenna with parasitic patch and elliptical cylindrical dielectric for concealed object detection with microwave imaging," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 741-742, Singapore, 2021.

52. Asok, A. O. and S. Dey, "UWB antipodal vivaldi antenna with metamaterial slabs and dielectric enclosure for microwave to millimeter wave imaging applications," 2021 IEEE Asia-Pacific Microwave Conference (APMC), 49-51, Brisbane, Australia, 2021.

53. Asok, A. O., S. J. G. Nath, and S. Dey, "Microwave breast imaging using synthetic aperture radar method utilizing UWB antenna," 2020 IEEE MTT-S Latin America Microwave Conference (LAMC 2020), 1-4, Cali, Colombia, 2021.

54. Asok, A. O. and S. Dey, "Novel UWB antipodal antenna with paddle shaped stubs and frustum shaped dielectric loading for microwave imaging applications," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 1060-1062, Hong Kong, Hong Kong, 2020.

55. Reimer, T., M. Solis-Nepote, and S. Pistorius, "The application of an iterative structure to the delay-and-sum and the delay-multiply-and-sum beamformers in breast microwave imaging," Diagnostics, Vol. 10, No. 6, 411-426, 2020.
doi:10.3390/diagnostics10060411

56. Reimer, T., J. Krenkevich, and S. Pistorius, "An open-access experimental dataset for breast microwave imaging," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, Copenhagen, Denmark, 2020.