Vol. 137
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-15
Coupling Analysis of Multi-Physical Fields of Magnetic Gear Motor with Nonuniform Air-Gap Halbach Array Magnetization
By
Progress In Electromagnetics Research C, Vol. 137, 251-262, 2023
Abstract
In this paper, a novel magnetic gear motor (MGM) with nonuniform air gap Halbach array magnetization is proposed to study the influence of temperature change on its electromagnetic performance. The inner PM adopts the Halbach array magnetization structure, which makes the inner rotor air gap have an uneven air gap structure, thereby improving the air gap flux density. In addition, the air gap magnetic field of MGM is analyzed by the finite element method (FEM), and the 3D model of the motor is established. The main losses of the motor, including copper loss, eddy current loss, and hysteresis loss are coupled to each component as a thermal source and studied by magneto-thermal coupling. The transient variation characteristics of loss distribution during MGM operation are comprehensively considered. The temperature variation of each component of the MGM with time during load operation is studied in detail. The results show that the temperature of the PM of the MGM is close to 91.8˚C when the rated load is running, and the PM of the motor does not undergo irreversible demagnetization.
Citation
Zhangtao Kui, Kun Yang, Weizhao Tang, and Libing Jing, "Coupling Analysis of Multi-Physical Fields of Magnetic Gear Motor with Nonuniform Air-Gap Halbach Array Magnetization," Progress In Electromagnetics Research C, Vol. 137, 251-262, 2023.
doi:10.2528/PIERC23061402
References

1. Jo, I.-H., H.-W. Lee, G. Jeong, W.-Y. Ji, and C.-B. Park, "A study on the reduction of cogging torque for the skew of a magnetic geared synchronous motor," IEEE Trans. Magn., Vol. 55, No. 2, 1-5, Feb. 2019.
doi:10.1109/TMAG.2018.2873310

2. Aiso, K., K. Akatsu, and Y. Aoyama, "A novel reluctance magnetic gear for high-speed motor," IEEE Trans. Ind. Appl., Vol. 55, No. 3, 2690-2699, May-Jun. 2019.
doi:10.1109/TIA.2019.2900205

3. Tang, H., J. Di, Z. Wu, and W. Li, "Temperature analysis for the asymmetric six-phase permanent magnet synchronous motor in healthy and fault-tolerant modes," IEEE Trans. Ind. Electron., Vol. 70, No. 7, 6482-6493, Jul. 2023.
doi:10.1109/TIE.2022.3199938

4. Huang, X., Q. Tan, L. Li, J. Li, and Z. Qian, "Winding temperature field model considering void ratio and temperature rise of a permanent-magnet synchronous motor with high current density," IEEE Trans. Ind. Electron., Vol. 64, No. 3, 2168-2177, Mar. 2017.
doi:10.1109/TIE.2016.2625242

5. Yan, L., Z. Dong, and S. Zhang, "Thermal analysis of a novel linear oscillating machine based on direct oil-cooling windings," IEEE Trans. Energy Convers., Vol. 37, No. 2, 1042-1051, Jun. 2022.
doi:10.1109/TEC.2021.3118930

6. Xu, Y., B. Zhang, and G. Feng, "Research on thermal capacity of a high-torque-density direct drive permanent magnet synchronous machine based on a temperature cycling module," IEEE Access, Vol. 8, 155721-155731, 2020.
doi:10.1109/ACCESS.2020.3019483

7. Song, Z., R. Huang, W. Wang, S. Liu, and C. Liu, "An improved dual iterative transient thermal network model for PMSM with natural air cooling," IEEE Trans. Energy Convers., Vol. 37, No. 4, 2588-2600, Dec. 2022.
doi:10.1109/TEC.2022.3179172

8. Gan, C., Y. Chen, X. Cui, J. Sun, R. Qu, and J. Si, "Comprehensive investigation of loss calculation and sequential iterative uid-solid coupling schemes for high-speed switched reluctance motors," IEEE Trans. Energy Convers., Vol. 36, No. 2, 671-681, Jun. 2021.
doi:10.1109/TEC.2020.3023039

9. Yang, C., Y. Zhang, and H. Qiu, "Influence of output voltage harmonic of inverter on loss and temperature field of permanent magnet synchronous motor," IEEE Trans. Magn., Vol. 55, No. 6, 1-5, Jun. 2019.

10. Guo, C., S. Huang, J. Wang, and Y. Feng, "Research of cryogenic permanent magnet synchronous motor for submerged liquefied natural gas pump," IEEE Trans. Energy Convers., Vol. 33, No. 4, 2030-2039, Dec. 2018.
doi:10.1109/TEC.2018.2868954

11. Wang, H., J. Chen, Y. Jiang, and D. Wang, "Coupled electromagnetic and thermal analysis of permanent magnet rectifier generator based on LPTN," IEEE Trans. Magn., Vol. 58, No. 2, 1-5, Feb. 2022.
doi:10.1109/TMAG.2021.3140011

12. Tong, W., R. Sun, S. Li, and R. Tang, "Loss and thermal analysis for high-speed amorphous metal PMSMs using 3-D electromagnetic-thermal Bi-directional coupling," IEEE Trans. Energy Convers., Vol. 36, No. 4, 2839-2849, Dec. 2021.
doi:10.1109/TEC.2021.3065336

13. Huang, X., L. Li, B. Zhou, C. Zhang, and Z. Zhang, "Temperature calculation for tubular linear motor by the combination of thermal circuit and temperature field method considering the linear motion of air gap," IEEE Trans. Ind. Electron., Vol. 61, No. 8, 3923-3931, Aug. 2014.
doi:10.1109/TIE.2013.2286576

14. Tang, Y., L. Chen, F. Chai, and T. Chen, "Thermal modeling and analysis of active and end windings of enclosed permanent-magnet synchronous In-wheel motor based on multi-block method," IEEE Trans. Energy Convers., Vol. 35, No. 1, 85-94, Mar. 2020.
doi:10.1109/TEC.2019.2946384

15. Uzhegov, N., J. Barta, J. Kurfurst, C. Ondrusek, and J. Pyrhonen, "Comparison of high-speed electrical motors for a turbo circulator application," IEEE Trans. Ind. Appl., Vol. 53, No. 5, 4308-4317, Sept.-Oct. 2017.
doi:10.1109/TIA.2017.2700793

16. Liu, G., M. Liu, Y. Zhang, H. Wang, and C. Gerada, "High-speed permanent magnet synchronous motor iron loss calculation method considering multiphysics factors," IEEE Trans. Ind. Electron., Vol. 67, No. 7, 5360-5368, Jul. 2020.
doi:10.1109/TIE.2019.2934075

17. Li, W., P. Wang, D. Li, X. Zhang, J. Cao, and J. Li, "Multiphysical field collaborative optimization of premium induction motor based on GA," IEEE Trans. Ind. Electron., Vol. 65, No. 2, 1704-1710, Feb. 2018.
doi:10.1109/TIE.2017.2752120

18. Zhang, M., W. Li, and H. Tang, "Demagnetization fault diagnosis of the permanent magnet motor for electric vehicles based on temperature characteristic quantity," IEEE Trans. Transp. Electrif., Vol. 9, No. 1, 759-770, Mar. 2023.
doi:10.1109/TTE.2022.3200927

19. Almandoz, G., I. Gomez, G. Ugalde, J. Poza, and A. J. Escalada, "Study of demagnetization risk in PM machines," IEEE Trans. Ind. Appl., Vol. 55, No. 4, 3490-3500, Jul.-Aug. 2019.
doi:10.1109/TIA.2019.2904459