Vol. 136
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-14
High Gain Multiband Microstrip Antenna for LTE, WLAN, Amateur Radio, and Sub-6 GHz 5G Applications
By
Progress In Electromagnetics Research C, Vol. 136, 87-99, 2023
Abstract
This paper presents a novel gap coupled suspended multiband microstrip antenna suitable for wireless applications like long term evolution (LTE), wireless local area network (WLAN), Amateur radio, and Sub 6 GHz 5G wireless applications. The proposed antenna is a single layer geometry suspended in air that employs a gap-coupled feed with a parasitic strip for tuning the input impedance. The overall dimensions of the antenna are 41.4 mm x 39 mm x 3.12 mm. The presented antenna offers a total of six resonant frequencies centered at 1.70 GHz, 2.77 GHz, 3.03 GHz, 4.26 GHz, 4.58 GHz, and 5.64 GHz. Measured resonant frequencies fairly match the simulated values. Further, the gain values at these frequencies are 7.29 dBi, 6.10 dBi, 7.39 dBi, 5.39 dBi, 6.22 dBi, & 7.03 dBi, and the corresponding measured gain values are 6.92 dBi, 7.72 dBi, 4.88 dBi, 5.34 dBi, 4.25 dBi, and 6.51 dBi, respectively. Radiation patterns were measured at all these frequencies and found to have highly stable radiation characteristics except for slight asymmetry at the high frequency end of the operational band.
Citation
Pradeep Reddy, and Veeresh G. Kasabegoudar, "High Gain Multiband Microstrip Antenna for LTE, WLAN, Amateur Radio, and Sub-6 GHz 5G Applications," Progress In Electromagnetics Research C, Vol. 136, 87-99, 2023.
doi:10.2528/PIERC23061102
References

1. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Broadband symmetrical E-shaped patch antenna with multi-mode resonance for 5G millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4474-4483, July 2019.
doi:10.1109/TAP.2019.2911266

2. Lu, H., F. Liu, W. Wang, Z. Gao, X. Bai, and Y. Li, "Capacitive probe compensation-fed wideband patch antenna with U-shaped parasitic elements for 5G/WLAN/Wi-Max applications," IEICE Express, Vol. 16, No. 16, 1-6, 2019.

3. Singh, D. K., B. K. Kanujia, S. Dwari, and G. P. Pandey, "Modeling of a dual circularly polarized capacitive-coupled slit loaded truncated microstrip antenna," Journal of Computational Electronics, Vol. 19, No. 4, 1564-1572, 2020.
doi:10.1007/s10825-020-01527-0

4. Kasabegoudar, V. G. and K. J. Vinoy, "Coplanar capacitively coupled probe fed microstrip antennas for wideband applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3131-3138, 2010.
doi:10.1109/TAP.2010.2055781

5. Kasabegoudar, V. G. and P. Reddy, "A review of low profile single layer microstrip antennas," International Journal of Electrical and Electronic Engineering & Telecommunications, Vol. 11, No. 2, 122-131, 2022.
doi:10.18178/ijeetc.11.2.122-131

6. Reddy, P. and V. G. Kasabegoudar, "Gap coupled suspended ultra-wideband microstrip antennas for 5G applications," International Journal of Engineering Trends and Technology, Vol. 71, No. 2, 371-381, 2023.
doi:10.14445/22315381/IJETT-V71I2P239

7. Sun, W., Y. Li, L. Chang, H. Li, X. Qin, and H. Wang, "Dual-band dual-polarized microstrip antenna array using double-layer gridded patches for 5G millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 6489-6499, October 2021.
doi:10.1109/TAP.2021.3070185

8. Yang, S., G.-M. Zhang, X.-D. Yue, J.-L. Ru, and G.-P. Fan, "A dual-frequency broadband patch antenna with L-shaped probe feed for 5G communication," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, 2019.

9. Kasabegoudar, V. G., "Dual frequency ring antennas with coplanar capacitive feed," Progress In Electromagnetic Research C, Vol. 23, 27-39, 2011.
doi:10.2528/PIERC11060104

10. Kasabegoudar, V. G. and A. Kumar, "Dual band coplanar capacitive coupled microstrip antennas with and without air gap for wireless applications," Progress In Electromagnetic Research C, Vol. 36, 105-117, 2013.
doi:10.2528/PIERC12110612

11. Mok, W. C., S. H. Wong, K. M. Luk, and K. F. Lee, "Single-layer single-patch dual-band and triple-band patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4341-4344, 2013.
doi:10.1109/TAP.2013.2260516

12. Gao, M. and X. Zhao, "Design of tri-band patch antenna with enhanced bandwidth and diversity pattern for indoor wireless communication," Applied Sciences, Vol. 12, 1-13, 2022.
doi:10.3390/app12083971

13. Elkorany, A. S., et al., "Implementation of a miniaturized planar tri-band microstrip patch antenna for wireless sensors in mobile applications," Sensors, Vol. 22, 2022.
doi:10.1109/JSEN.2022.3164002

14. Wang, L., J. Yu, T. Xie, and K. Bi, "A novel multiband fractal antenna for wireless application," International Journal of Antennas and Propagation, 1-9, 2021.

15. Rengasamy, R., D. Dhanasekaran, C. Chakraborty, and S. Ponnan, "Modified Minkowski fractal multiband antenna with circular-shaped split-ring resonator for wireless applications," Measurement, Vol. 182, 1-9, 2021.

16. Khan, Z., et al., "A single-fed multiband antenna for WLAN and 5G applications," Sensors, Vol. 20, 1-13, 2020.
doi:10.1109/JSEN.2020.2978309

17. Sharma, N., A. Kumar, A. De, and R. K. Jain, "Design of compact hexagonal shaped multiband antenna for wearable and tumor detection applications," Progress In Electromagnetic Research M, Vol. 105, 205-217, 2021.
doi:10.2528/PIERM21081701

18. Patel, D. H. and G. D. Makwana, "Multiband antenna for GPS, IRNSS, sub 6 GHz 5G and WLAN applications," Progress In Electromagnetic Research M, Vol. 116, 53-63, 2023.
doi:10.2528/PIERM23020902

19. Patel, D. H. and G. D. Makwana, "Multiband antenna for 2G/3G/4G and sub-6 GHz 5G applications using characteristic mode analysis," Progress In Electromagnetic Research M, Vol. 115, 107-117, 2023.
doi:10.2528/PIERM22122901

20. Kumar, A. and A. P. S. Pharwaha, "Development of a modified Hilbert curve fractal antenna for multiband applications," IETE Journal of Research, 1-10, 2020.

21. Ali, T., K. D. Prasad, and R. C. Biradar, "A miniaturized slotted multiband antenna for wireless applications," Journal of Computational Electronics, Vol. 17, 1056-1070, 2018.
doi:10.1007/s10825-018-1183-z

22. Ali, T., F. Nikhat, and R. C. Biradar, "A miniaturized multiband reconfigurable fractal slot antenna for GPS/GNSS/Bluetooth/WiMAX/X-band applications," AEU --- International Journal of Electronics and Communication, Vol. 94, 234-243, 2018.
doi:10.1016/j.aeue.2018.07.017

23. Ahmad, I., et al., "Design and experimental analysis of multiband compound reconfigurable 5G antenna for sub-6 GHz wireless applications," Wireless Communications and Mobile Computing, 1-14, 2021.

24. Sultan, K., M. Ikram, and N. Nguyen-Trong, "A multiband multibeam antenna for Sub-6 GHz and mm-wave 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 2022.
doi:10.1109/LAWP.2022.3164627

25. Desai, A., et al., "Multiband inverted E and U shaped compact antenna for digital broadcasting, wireless, and sub 6 GHz 5G applications," International Journal of Electronics and Communication, Vol. 123, 1-8, 2020.