Vol. 136
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-20
Uncertainty Quantification of Electromagnetic Exposure of Human Body with Medical Aortic Valve Stent Implants Under an EV-WPT Device
By
Progress In Electromagnetics Research C, Vol. 136, 199-213, 2023
Abstract
With the gradual popularization of high-power electric vehicle wireless power transfer (EV-WPT) applications, the safety issue of human exposure to electromagnetic fields leaked from EV-WPT devices has received considerable attention. In particular, careful attention should be devoted to human protection from electromagnetic field issues among people with medical implants. Considering the electromagnetic coupling between a human aortic valve metal stent (AVS) and the leakage field, this study establishes a numerical simulation model of the electromagnetic exposure of a human implanted with AVS to the leakage electromagnetic field of EV-WPT on the basis of human medical ethics. Given the existence of many uncertainties in actual WPT charging, which may cause damage to a human heart implanted with AVS, an orthogonal matching pursuit sparse generalized polynomial chaos expansion (OMP-sgPCE) method is developed to conduct an uncertainty quantification of the maximum induced electric field intensity (Emax) of a human heart implanted with AVS. Results indicate that the induced Emax obtained by this method can exceed the ICNIRP guideline limit and may seriously endanger human heart safety. This study also adopts the Sobol method to obtain the degree of influence of the coil group's spatial location parameters and the AVS geometric parameters on the induced Emax, thereby providing a reasonable theoretical basis and scientific guidance for the optimal design of EV-WPT devices and AVS.
Citation
Tianhao Wang, Bo Li, Quanyi Yu, Yangyun Wu, Linlin Xu, Yaodan Chi, and Baizhi Li, "Uncertainty Quantification of Electromagnetic Exposure of Human Body with Medical Aortic Valve Stent Implants Under an EV-WPT Device," Progress In Electromagnetics Research C, Vol. 136, 199-213, 2023.
doi:10.2528/PIERC23060709
References

1. Sim, B., S. Jeong, J. Kim, S. Park, S. Lee, S. Hong, J. Song, H. Kim, H. Kang, H. Park, D. Lho, and J. Kim, "A near field analytical model for EMI reduction and efficiency enhancement using an nth harmonic frequency shielding coil in a loosely coupled automotive WPT system," IEEE Trans. Electromagn. Compat., Vol. 63, No. 3, 935-946, 2021.
doi:10.1109/TEMC.2020.3039412

2. Campi, T., S. Cruciani, F. Maradei, A. Andrea Montalto, F. Musumeci, and M. Feliziani, "EMI in a Cardiac Implantable Electronic Device (CIED) by the wireless powering of a Left Ventricular Assist Device (LVAD)," IEEE Trans. Electromagn. Compat., Vol. 63, No. 4, 988-995, 2021.
doi:10.1109/TEMC.2020.3047465

3. Hong, S., T. Kim, S. Lee, S. Jeong, B. Sim, H. Kim, J. Song, S. Ahn, and J. Kim, "A frequency-selective EMI reduction method for tightly coupled wireless power transfer systems using resonant frequency control of a shielding coil in smartphone application," IEEE Trans. Electromagn. Compat., Vol. 61, No. 6, 2031-2039, 2019.
doi:10.1109/TEMC.2019.2951775

4. Bosshard, R. and J. W. Kolar, "Multi-objective optimization of 50 kW/85 kHz IPT system for public transport," IEEE J. Emerg. Sel. Top. Power Electron., Vol. 4, No. 4, 1370-1382, 2016.
doi:10.1109/JESTPE.2016.2598755

5. Shin, J., S. Shin, Y. Kim, S. Ahn, S. Lee, G. Guho Jung, S. Jeon, and D. Cho, "Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles," IEEE Trans. Ind. Electron., Vol. 61, No. 3, 1179-1192, 2014.
doi:10.1109/TIE.2013.2258294

6. Choi, B., E. Kim, W. Shin, S. Park, and K. Kim, "Exposure assessment of a 20-kW wireless power transfer system for electric vehicles," Int. J. Automot. Technol., Vol. 21, No. 6, 1349-1353, 2020.
doi:10.1007/s12239-020-0127-3

7. Laakso, I. and A. Hirata, "Evaluation of the induced electric field and compliance procedure for a wireless power transfer system in an electrical vehicle," Phys. Med. Biol., Vol. 58, No. 21, 7583-7593, 2013.
doi:10.1088/0031-9155/58/21/7583

8. Budhia, M., J. T. Boys, G. A. Covic, and C. Y. Huang, "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 318-328, 2013.
doi:10.1109/TIE.2011.2179274

9. Park, S., "Evaluation of electromagnetic exposure during 85 kHz wireless power transfer for electric vehicles," IEEE Trans. Magn., Vol. 54, No. 1, 1-8, 2018.

10. Wang, Q., W. Li, J. Kang, and Y. Wang, "Electromagnetic safety evaluation and protection methods for a wireless charging system in an electric vehicle," IEEE Trans. Electromagn. Compat., Vol. 61, No. 6, 1913-1925, 2019.
doi:10.1109/TEMC.2018.2875903

11. Bailey, W. H., R. Bodemann, J. Bushberg, C. K. Chou, R. Cleveland, A. Faraone, K. R. Foster, K. E. Gettman, K. Graf, T. Harrington, A. Hirata, R. R. Kavet, J. Keshvari, B. J. Klauenberg, A. Legros, D. P. Maxson, J. M. Osepchuk, J. P. Reilly, R. A. Tell, A. Thansandote, K. Yamazaki, M. C. Ziskin, and P. M. Zollman, "Synopsis of IEEE Std C95.1TM --- 2019 `IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz'," IEEE Access, Vol. 7, 171346-171356, 2019.
doi:10.1109/ACCESS.2019.2954823

12. "International Commission on Non-Ionizing Radiation Protection (ICNIRP): Gaps in Knowledge Relevant to the, Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz-100 kHz)," Health Phys., Vol. 118, No. 5, 533-542, 2020.
doi:10.1097/HP.0000000000001261

13. Perpetuo, L., A. S. Barros, J. Dalsuco, R. Nogueira-Ferreira, P. Resende-Goncalves, I. Falcao-Pires, R. Ferreira, A. Leite-Moreira, F. Trindade, and R. Vitorino, "Coronary artery disease and aortic valve stenosis: A urine proteomics study," Int. J. Mol. Sci., Vol. 23, No. 21, 13579, 2022.
doi:10.3390/ijms232113579

14. Kim, M., W. Lee, K. Kim, H. Lim, and Y. J. Kim, "A preclinical trial of perventricular pulmonary valve implantation: Pericardial versus aortic porcine valves mounted on self-expandable stent," Artif. Organs., Vol. 45, No. 5, E89-E100, 2020.

15. Das, R. and H. Yoo, "RF heating study of a new medical implant lead for 1.5 T, 3 T, and 7 T MRI systems," IEEE Trans. Electromagn. Compat., Vol. 59, No. 2, 360-366, 2017.
doi:10.1109/TEMC.2016.2614894

16. Shah, I. A., Y. Cho, and H. Yoo, "Safety evaluation of medical implants in the human body for a wireless power transfer system in an electric vehicle," IEEE Trans. Electromagn. Compat., Vol. 63, No. 3, 681-691, 2021.
doi:10.1109/TEMC.2020.3023734

17. Shah, I. A. and H. Yoo, "Assessing human exposure with medical implants to electromagnetic fields from a wireless power transmission system in an electric vehicle," IEEE Trans. Electromagn. Compat., Vol. 62, No. 2, 338-345, Apr. 2020.
doi:10.1109/TEMC.2019.2903844

18. Shah, I. A., A. Basir, Y. Cho, and H. Yoo, "Safety analysis of medical implants in the human head exposed to a wireless power transfer system," IEEE Trans. Electromagn. Compat., Vol. 64, No. 3, 640-649, 2022.
doi:10.1109/TEMC.2022.3144468

19. Iqbal, A., M. Al-Hasan, I. B. Mabrouk, A. Basir, M. Nedil, and H. Yoo, "Biotelemetry and wireless powering of biomedical implants using a rectifier integrated self-diplexing implantable antenna," IEEE Trans. Microw. Theory Tech., Vol. 69, No. 7, 3438-3451, 2021.
doi:10.1109/TMTT.2021.3065560

20. Wang, T., Y. Wu, B. Li, Q. Yu, L. Xu, and S. Guan, "Design of electric vehicle's wireless power transfer system based on deep learning combined with multi-objective optimization," IEEE Trans. Compon. Pack. Manuf. Technol., Vol. 12, No. 12, 1983-1994, 2022.
doi:10.1109/TCPMT.2022.3222841

21. Larbi, M., R. Trinchero, F. G. Canavero, P. Besnier, and M. Swaminathan, "Analysis of parameter variability in an integrated wireless power transfer system via partial least-squares regression," IEEE Trans. Compon. Pack. Manuf. Technol., Vol. 10, No. 11, 1795-1802, 2020.
doi:10.1109/TCPMT.2020.3002226

22. Yu, Q., J. Lin, X. Ma, B. Li, L. Xu, and T. Wang, "Efficiency optimization of wireless power transfer system for electric vehicle based on improved marine predators algorithm," IEEE Trans. Intell. Transp. Syst., Vol. 24, No. 7, 7847-7858, 2023.
doi:10.1109/TITS.2022.3229958

23. Wang, T., Q. Yu, B. Li, G. Lv, Y. Wu, and S. Guan, "Uncertainty quantification of human electromagnetic exposure from electric vehicle wireless power transfer system," IEEE Trans. Intell. Transp. Syst., 1-11, 2023.
doi:10.1109/TITS.2023.3287677

24. Cheng, X. and V. Monebhurrun, "Application of different methods to quantify uncertainty in specific absorption rate calculation using a CAD-based mobile phone model," IEEE Trans. Electromagn. Compat., Vol. 59, No. 1, 14-23, 2017.
doi:10.1109/TEMC.2016.2605127

25. Sobol, I. M., "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates," Math. Comput. Simul., Vol. 55, No. 1-3, 271-280, 2001.
doi:10.1016/S0378-4754(00)00270-6

26. Sudret, B., "Global sensitivity analysis using polynomial chaos expansions," Reliab. Eng. Syst. Saf., Vol. 93, No. 7, 964-979, 2008.
doi:10.1016/j.ress.2007.04.002

27. Verma, M., J. Bassaganya-Riera, A. Leber, N. Tubau-Juni, S. Hoops, V. Abedi, X. Chen, and R. Hontecillas, "High-resolution computational modeling of immune responses in the gut," GigaScience, Vol. 8, No. 6, 2047-217X, 2019.
doi:10.1093/gigascience/giz062

28. Kumar, D., A. Singh, P. Kumar, R. K. Jha, S. K. Sahoo, and V. Jha, "Sobol sensitivity analysis for risk assessment of uranium in groundwater," Environ. Geochem. Health., Vol. 42, No. 6, 1789-1801, 2020.
doi:10.1007/s10653-020-00522-5

29. Bdour, T. and A. Reineix, "Global sensitivity analysis and uncertainty quantification of radiated susceptibility in PCB using nonintrusive polynomial chaos expansions," IEEE Trans. Electromagn. Compat., Vol. 58, No. 3, 939-942, 2016.
doi:10.1109/TEMC.2016.2535266

30. Barati, S., N. Fatouraee, M. Nabaei, L. Petrini, F. Migliavacca, G. Luraghi, and J. F. R. Matas, "Patient-specific multi-scale design optimization of transcatheter aortic valve stents," Comput. Meth. Programs Biomed., Vol. 221, 106912-106925, 2017.

31. Christ, A., M. Douglas, J. Nadakuduti, and N. Kuster, "Assessing human exposure to electromagnetic fields from wireless power transmission systems," Proc. IEEE, Vol. 101, No. 6, 1482-1493, 2013.
doi:10.1109/JPROC.2013.2245851

32. International Commission on Non-Ionizing Radiation Protection (ICNIRP) "Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz)," Health Phys., Vol. 99, No. 6, 818-836, 2010.
doi:10.1097/HP.0b013e3181f06c86

33. International Commission on Non-Ionizing Radiation Protection (ICNIRP) "Guidelines for limiting exposure to time-varying electric and magnetic fields (100 kHz to 300 GHz)," Health Phys., Vol. 118, No. 5, 483-524, 2020.
doi:10.1097/HP.0000000000001210

34. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM J. Sci. Comput., Vol. 22, No. 2, 619-644, 2002.
doi:10.1137/S1064827501387826