Vol. 137
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-09-04
Based on Fast Non-Singular Terminal Sliding of PMSM Model-Free Control
By
Progress In Electromagnetics Research C, Vol. 137, 139-153, 2023
Abstract
In model-free sliding mode control (MFSMC) of permanent magnet synchronous motor (PMSM), the first-order sliding mode surface convergence state is asymptotic convergence, and the dithering of the first-order sliding mode surface causes the motor control performance to degrade when the motor parameters change. To save the problem, a model-free fast non-singular terminal sliding mode control (MFFNTSMC) strategy is proposed. Firstly, considering the perturbation of motor parameters, a mathematical model of embedded permanent magnet synchronous motor is established, and the ultra-local model of the speed link is summarized. Then, according to the defined fast non-singular terminal sliding mode surface and the new reaching law, a new mode-free sliding mode controller based on the speed link is designed, which weakens the jitter by eliminating the high-gain switching by the high-order sliding surface, and at the same time makes the system state converge to zero in a limited time. In order to more accurately track the speed tracking effect, an extended sliding mode observer (ESMO) is used to observe the unknown disturbance of the system in real time. Finally, simulation and experiment comparisons with PI control as well as MFSMC control confirm that the method proposed in this paper has better steady state and transient performance for PMSM.
Citation
Yuxin Yang, Musheng Deng, Sicheng Li, and Yang Zhang, "Based on Fast Non-Singular Terminal Sliding of PMSM Model-Free Control," Progress In Electromagnetics Research C, Vol. 137, 139-153, 2023.
doi:10.2528/PIERC23051803
References

1. Bai, C., Z. Yin, Y. Zhang, and J. Liu, "Robust predictive control for linear permanent magnet synchronous motor drives based on an augmented internal model disturbance observer," IEEE Transactions on Industrial Electronics, Vol. 69, No. 10, 9771-9782, 2022.
doi:10.1109/TIE.2022.3140532

2. Fan, Z.-X., S. Li, and R. Liu, "ADP-based optimal control for systems with mismatched disturbances: A PMSM application," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 6, 2057-2061, Jun. 2023.
doi:10.1109/TCSII.2022.3233356

3. Ullah, K., J. Guzinski, and A. F. Mirza, "Critical review on robust speed control techniques for permanent magnet synchronous motor (PMSM) speed regulation," Energies, Vol. 15, No. 3, 1235, 2022.
doi:10.3390/en15031235

4. Pang, D.-C., Z.-J. Shi, Y.-H. Chang, H.-C. Huang, and G.-T. Bui, "Investigation of an interior micro permanent magnet synchronous motor," Energies, Vol. 14, No. 14, 4172, 2021.
doi:10.3390/en14144172

5. Zhao, K., et al., "Demagnetization-fault reconstruction and tolerant-control for PMSM using improved SMO-based equivalent-input-disturbance approach," IEEE/ASME Transactions on Mechatronics, Vol. 27, No. 2, 701-712, 2022.
doi:10.1109/TMECH.2021.3069787

6. Wu, J., J. Zhang, B. Nie, Y. Liu, and X. He, "Adaptive control of PMSM servo system for steering-by-wire system with disturbances observation," IEEE Transactions on Transportation Electrification, Vol. 8, No. 2, 2015-2028, Jun. 2022.
doi:10.1109/TTE.2021.3128429

7. Qiu, H., H. Zhang, L. Min, T. Ma, and Z. Zhang, "Adaptive control method of sensorless permanent magnet synchronous motor based on super-twisting sliding mode algorithm," Electronics, Vol. 11, No. 19, 3046, 2022.
doi:10.3390/electronics11193046

8. Novak, Z. and M. Novak, "Adaptive PLL-based sensorless control for improved dynamics of high-speed PMSM," IEEE Transactions on Power Electronics, Vol. 37, No. 9, 10154-10165, Sept. 2022.
doi:10.1109/TPEL.2022.3169708

9. Yi, P., X. Wang, D. Chen, and Z. Sun, "PMSM current harmonics control technique based on speed adaptive robust control," IEEE Transactions on Transportation Electrification, Vol. 8, No. 2, 1794-1806, 2022.
doi:10.1109/TTE.2021.3128535

10. Wei, Y., Y. Wei, Y. Sun, H. Qi, and M. Li, "An advanced angular velocity error prediction horizon self-tuning nonlinear model predictive speed control strategy for PMSM system," Electronics, Vol. 10, No. 9, 1123, 2021.
doi:10.3390/electronics10091123

11. Li, Z., F. Wang, D. Ke, J. Li, and W. Zhang, "Robust continuous model predictive speed and current control for PMSM with adaptive integral sliding-mode approach," IEEE Transactions on Power Electronics, Vol. 36, No. 12, 14398-14408, 2021.
doi:10.1109/TPEL.2021.3086636

12. Jiang, W., W. Han, L. Wang, Z. Liu, and W. Du, "Linear golden section speed adaptive control of permanent magnet synchronous motor based on model design," Processes, Vol. 10, No. 5, 1010, 2022.
doi:10.3390/pr10051010

13. Duan, J., S. Wang, and L. Sun, "Backstepping sliding mode control of a permanent magnet synchronous motor based on a nonlinear disturbance observer," Applied Sciences, Vol. 12, No. 21, 11225, 2022.
doi:10.3390/app122111225

14. Li, S., Y. Xu, W. Zhang, and J. Zou, "Robust deadbeat predictive direct speed control for PMSM with dual second-order sliding-mode disturbance observers and sensitivity analysis," IEEE Transactions on Power Electronics, Vol. 38, No. 7, 8310-8326, Jul. 2023.
doi:10.1109/TPEL.2023.3267172

15. Xu, B., L. Zhang, and W. Ji, "Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives," IEEE Transactions on Transportation Electrification, Vol. 7, No. 4, 2753-2762, 2021.
doi:10.1109/TTE.2021.3083925

16. Fu, D. and X. Zhao, "A novel robust adaptive nonsingular fast integral terminal sliding mode controller for permanent magnet linear synchronous motors," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 11, No. 2, 1672-1683, Apr. 2023.
doi:10.1109/JESTPE.2022.3229904

17. Jiang, C., Q. Wang, Z. Li, N. Zhang, and H. Ding, "Nonsingular terminal sliding mode control of PMSM based on improved exponential reaching law," Electronics, Vol. 10, No. 15, 1776, 2021.
doi:10.3390/electronics10151776

18. Rafiq, M. A., A. Ulasyar, W. Uddin, H. S. Zad, A. Khattak, and K. Zeb, "Design and control of a quasi-Z source multilevel inverter using a new reaching law-based sliding mode control," Energies, Vol. 15, No. 21, 8002, 2022.
doi:10.3390/en15218002

19. Lin, F.-J., S.-G. Chen, M.-S. Huang, C.-H. Liang, and C.-H. Liao, "Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control," IEEE Transactions on Industrial Electronics, Vol. 69, No. 1, 141-150, 2022.
doi:10.1109/TIE.2021.3050373

20. Xu, D., B. Ding, B. Jiang, W. Yang, and P. Shi, "Nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor via high-order super-twisting observer," IEEE Transactions on Mechatronics, Vol. 27, No. 3, 1651-1659, 2022.
doi:10.1109/TMECH.2021.3086527

21. Yue, Y., Y. Geng, and W. Wang, "Continuous nonsingular fast terminal sliding mode control for speed tracking of PMSM based on finite time disturbance observer," Processes, Vol. 10, No. 7, 1407, 2022.
doi:10.3390/pr10071407

22. Jiang, C., Q. Wang, N. Zhang, and H. Ding, "Overcurrent protection and unmatched disturbance rejection under non-cascade structure for PMSM," Energies, Vol. 15, No. 18, 6573, 2022.
doi:10.3390/en15186573

23. Li, T. and X. Liu, "Model-free non-cascade integral sliding mode control of permanent magnet synchronous motor drive with a fast reaching law," Symmetry, Vol. 13, No. 9, 1680, 2021.
doi:10.3390/sym13091680

24. Lv, M., S. Gao, Y. Wei, D. Zhang, H. Qi, and Y. Wei, "Model-free parallel predictive torque control based on ultra-local model of permanent magnet synchronous machine," Actuators, Vol. 11, No. 2, 31, 2022.
doi:10.3390/act11020031

25. Mousavi, M. S., et al., "Predictive torque control of induction motor based on a robust integral sliding mode observer," IEEE Transactions on Industrial Electronics, Vol. 70, No. 3, 2339-2350, Mar. 2023.
doi:10.1109/TIE.2022.3169831

26. Yu, Y. and X. Liu, "Model-free fractional-order sliding mode control of electric drive system based on nonlinear disturbance observer," Fractal and Fractional, Vol. 6, No. 10, 603, 2022.
doi:10.3390/fractalfract6100603

27. Zhang, Y., J. Jin, and L. Huang, "Model-free predictive current control of PMSM drives based on extended state observer using ultralocal model," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 993-1003, 2021.
doi:10.1109/TIE.2020.2970660

28. Gao, S., Y. Wei, D. Zhang, H. Qi, Y. Wei, and Z. Yang, "Model-free hybrid parallel predictive speed control based on ultra-local model of PMSM for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 69, No. 10, 9739-9748, 2022.
doi:10.1109/TIE.2022.3159951

29. Li, T. and X. Liu, "Model-free non-cascade integral sliding mode control of permanent magnet synchronous motor drive with a fast reaching law," Symmetry, Vol. 13, No. 9, 1680, 2021.
doi:10.3390/sym13091680

30. Liu, H., W. Lin, Z. Liu, C. Buccella, and C. Cecati, "Model predictive current control with model-aid extended state observer compensation for PMSM drive," IEEE Transactions on Power Electronics, Vol. 38, No. 3, 3152-3162, 2023.
doi:10.1109/TPEL.2022.3225626