Vol. 134
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-08
Integration of LTE and GNSS Antenna for Multiband Performance in Vehicular Application
By
Progress In Electromagnetics Research C, Vol. 134, 157-169, 2023
Abstract
The paper proposes a antenna design that can serve as a comprehensive solution for covering 4G/5G cellular bands 850-1000 MHz, 1900 MHz, 2100-2700 MHz, 3300-4900 MHz, Global Navigation Satellite System (GNSS-L1) Band 1.56 GHz-1.61 GHz, V2X 5.850-5.925 GHz band which are appropriate for use in automobile applications. The proposed antenna is designed with respective polarization for cellular and GNSS applications, where the cellular antenna is linearly polarized, and the GNSS antenna is circularly polarized by chamfering the square patch. FR4 substrate material is used to construct the Long Term Evolution/4G (LTE) antenna. The optimization of the antennas ensures minimal coupling between them. The cellular antenna is designed using a hexagonal base with a modified ground plane to achieve the required cellular bands using a monopole (fractal design). The GNSS antenna is implemented on a PVC (Poly Vinyl Chloride) substrate. The measured results of S11 parameter show that the proposed design covers all the required 4G/5G bands with minimum S11 of -10 dB and a radiation pattern in the theta 60-90° range for cellular antenna, while the GNSS antenna has a zenith radiation pattern with axial ratio of <3 dB for theta angles in the 0-30° range and a mutual coupling of -15 dB. The fabricated antenna was measured to validate the simulated results of reflection coefficient, VSWR. All things considered, the suggested design is perfect for automobile applications to satisfy both satellite and mobile communication needs.
Citation
Amruta A. Nikam, and Rupali B. Patil, "Integration of LTE and GNSS Antenna for Multiband Performance in Vehicular Application," Progress In Electromagnetics Research C, Vol. 134, 157-169, 2023.
doi:10.2528/PIERC23051603
References

1. Alibakhshikenari, M., B. S. Virdee, C. H. See, et al. "Dual-polarized highly folded bowtie antenna with slotted self-grounded structure for sub-6 GHz 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 3028-3033, 2021.
doi:10.1109/TAP.2021.3118784

2. Gyawali, S., S. Xu, Y. Qian, and R. Q. Hu, "Challenges and solutions for cellular based V2X communications," IEEE Communications Surveys & Tutorials, Vol. 23, No. 1, 222-255, 2021.
doi:10.1109/COMST.2020.3029723

3. Wen, W. W., G. Zhang, and L.-T. Hsu, "GNSS NLOS exclusion based on dynamic object detection using LiDAR point cloud," IEEE Transactions on Intelligent Transportation Systems, Vol. 22, No. 2, 853-862, Feb. 2021.
doi:10.1109/TITS.2019.2961128

4. Preradov, D. and D. N. Aloi, "Cross polarized 2 x 2 LTE MIMO system for automotive shark fin application," Applied Computational Electromagnetics Society, Vol. 35, No. 10, 1207-1216, 2020.
doi:10.47037/2020.ACES.J.351014

5. Dong, Y., J. Choi, and T. Itoh, "Vivaldi antenna with pattern diversity for 0.7 to 2.7 GHz cellular band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 247-250, Feb. 2018.
doi:10.1109/LAWP.2017.2783323

6. Arianos, S., G. Dassano, F. Vipiana, and M. Orefice, "Design of multi-frequency compact antennas for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5604-5612, 2012.
doi:10.1109/TAP.2012.2213052

7. Michel, A., P. Nepa, M. Gallo, I. Moro, A. P. Filisan, and D. Zamberlan, "Printed wideband antenna for LTE-band automotive applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1245-1248, 2017.
doi:10.1109/LAWP.2016.2629619

8. Liu, Y., Z. Ai, G. Liu, and Y. Jia, "An integrated shark-fin antenna for MIMO-LTE, FM, and GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1666-1670, Aug. 2019.
doi:10.1109/LAWP.2019.2927019

9. Franchina, V., A. Michel, P. Nepa, M. Gallo, and R. Parolari, "A compact 3D antenna for automotive LTE MIMO applications," Proceedings of the 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, APWC, 326-329, Verona Italy, Sept. 2017.

10. Friedrich, A., B. Geck, O. Klemp, and H. Kellermann, "On the design of a 3D LTE antenna for automotive applications based on MID technology," Proceedings of the 2013 European Microwave Conference, 640-643, Nuremberg, Germany, Oct. 2013.

11. Goncharova, I. and S. Lindenmeier, "A high efficient automotive roof-antenna concept for LTE, DAB-L, GNSS and SDARS with low mutual coupling," Proceedings of the 2015 9th European Conference on Antennas and Propagation, EuCAP, 1-5, Lisbon, Portugal, Apr. 2015.

12. Goncharova, I. and S. Lindenmeier, "A high-efficient 3-D Nefer-antenna for LTE communication on a car," Proceedings of the 8th European Conference on Antennas and Propagation, EuCAP, 3273-3277, e Hague, Netherlands, Apr. 2014.

13. Navarro-Mendez, D. V., L. F. Carrera-Suarez, E. Antonino-Daviu, et al. "Compact wideband Vivaldi monopole for LTE mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1068-1071, 2015.
doi:10.1109/LAWP.2015.2389956

14. Yacoub, A. M., M. O. Khalifa, and D. N. Aloi, "Design of multi-wideband Automotive cell antenna for LTE and 5G applications," 2021 15th European Conference on Antennas and Propagation, EuCAP, 2021.

15. Sanz-Izquierdo, B., S. Jun, J. Heirons, and N. Acharya, "Inkjet printed and folded LTE antenna for vehicular application," Proceedings of the 2016 46th European Microwave Conference (EuMC), 88-91, London, UK, Oct. 2016.

16. Cheng, Y., J. Lu, and C. Wang, "Design of a multiple band vehicle-mounted antenna," International Journal of Antennas and Propagation, Vol. 2019, Article ID 6098014, 11 pages, 2019.

17. Sadeghzadeh, R. A., M. Alibakhshi-Kenari, and M. Naser Moghadasi, "UWB antenna based on SCRLH-TLs for portable wireless devices," Microwave and Optical Technology Letters, Vol. 58, No. 1, 69-71, 2016.
doi:10.1002/mop.29491

18. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, and B. Singh Virdee, "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 1, 88-96, 2016.
doi:10.1002/mmce.20942

19. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, B. Singh Virdee, and E. Limiti, "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 3, 217-225, 2016.
doi:10.1002/mmce.20956

20. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band," Radio Science, Vol. 53, No. 2, 154-165, Feb. 2018.
doi:10.1002/2017RS006515

21. Yacoub, A., M. Khalifa, and D. N. Aloi, "Wide bandwidth low profile PIFA antenna for vehicular sub-6 GHz 5G and V2X wireless systems," Progress In Electromagnetics Research C, Vol. 109, 257-273, 2021.
doi:10.2528/PIERC21010609

22. Hasturkoglu, S. and S. Lindenmeier, "A wideband automotive antenna for actual and future mobile communication 5G/LTE/WLAN with low profile," Proceedings of the 2017 11th European Conference on Antennas and Propagation, EUCAP, 602-605, Paris, France, Mar. 2017.
doi:10.23919/EuCAP.2017.7928669

23. Artner, G., W. Kotterman, G. Del Galdo, and M. A. Hein, "Automotive antenna roof for cooperative connected driving," IEEE Access, Vol. 7, 20083-20090, 2019.
doi:10.1109/ACCESS.2019.2897219

24. Ge, L., S. Gao, Y. Li, W. Qin, and J. Wang, "A low-profile dual-band antenna with different polarization and radiation properties over two bands for vehicular communications," IEEE Transactions on Vehicular Technology, Vol. 68, No. 1, 1004-1008, 2019.
doi:10.1109/TVT.2018.2881765

25. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2016.

26. Balanis, C. A., Microstrip Antennas, Antenna Theory, Analysis and Design, 3rd Ed., John Wiley & Sons, 2010.

27. Rahim, A. and P. K. Malik, "Analysis and design of fractal antenna for efficient communication network in vehicular model," Sustainable Computing: Informatics and Systems, Elsevier, Jun. 2021.

28. Madhav, B. T. P. and T. Anilkumar, "Design and study of multiband planar wheel-like fractal antenna for vehicular communication applications," Microwave & Optical Technology Letters, Wiley, 2017.

29. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

30. Wang, L., J. Yu, T. Xie, and K. Bi, "A novel multiband fractal antenna for wireless application," International Journal of Antennas and Propagation, Vol. 2021, Article ID 9926753, 9 pages, 2021.

31. Gurjar, R., D. K. Upadhyay, B. K. Kanaujia, and A. Kumar, "A compact modified sierpinski carpet fractal UWB MIMO antenna with square shaped funnel-like ground stub," AEU --- Int. J. Electron. Commun., Vol. 117, 153126, 2020, ISSN 1434-8411.
doi:10.1016/j.aeue.2020.153126

32. Sabir, M. and G. Ratnu, "A design of compact T-shaped fractal patch antenna for X-band applications," Mater. Today Proc., Vol. 29, Part 2, 295-299, 2020, ISSN 2214-7853.

33. Singh, J., R. Stephan, and M. A. Hein, "Low profile Penta band automotive patch antenna using horizontal stacking and corner feeding," IEEE Access, Vol. 7, 74198-74205, May 2019.
doi:10.1109/ACCESS.2019.2919730

34. Madhav, B. T. P. and T. Anilkumar, "Design and study of multiband planar wheel-like fractal antenna for vehicular communication applications," Microwave & Optical Technology Letters, Wiley, 2017.

35. Cheng, Y., J. Lu, and C. Wang, "Design of a multiple band vehicle-mounted antenna," Hindawi International Journal of Antennas and Propagation, Vol. 2019, Article ID 6098014, 2019.

36. Agrawal, N., A. K. Gautam, and K. Rambabu, "Design and packaging of multi-polarized triple-band antenna for automotive applications," International Journal of Electronics and Communications, Vol. 113, Jan. 2020.

37. Wang, L., J. Yu, T. Xie, and K. Bi, "A novel multiband fractal antenna for wireless application," International Journal of Antennas and Propagation, Vol. 2021, Article ID 9926753, 9 pages, 2021.