Vol. 135
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-25
A Folded Rectenna on a Flexible Substrate for 5G Energy Harvesting Applications
By
Progress In Electromagnetics Research C, Vol. 135, 69-81, 2023
Abstract
This paper presents the design, fabrication, and measurement results of a flexible folded dipole rectenna for 5G technology. The proposed rectenna is a single-sided structure fabricated on a flexible Kapton substrate with a maximum RF to DC conversion efficiency close to 53% for an input power of -9 dBm at 3.5 GHz with 3-KΩ. Moreover, the measured results show that the conversion efficiency is above 40% across a broad range of input power levels (from -14 to -8 dBm). The paper discusses the prototype's design and simulation results, fabrication steps, and measurement results. The proposed rectenna is compact, low-cost, and flexible, making it suitable for wearable applications.
Citation
Mustapha Bajtaoui, Mohammed Ali Ennasar, Mariem Aznabet, Abdelmounaim Tachrifat, and Otman El Mrabet, "A Folded Rectenna on a Flexible Substrate for 5G Energy Harvesting Applications," Progress In Electromagnetics Research C, Vol. 135, 69-81, 2023.
doi:10.2528/PIERC23051505
References

1. Gu, Y., T. Zhang, H. Chen, et al. "Mini review on flexible and wearable electronics for monitoring human health information," Nanoscale Res. Lett., Vol. 14, 263, 2019.
doi:10.1186/s11671-019-3084-x

2. Seshadri, D. R., J. R. Rowbottom, C. Drummond, J. E. Voos, and J. Craker, "A review of wearable technology: Moving beyond the hype: From need through sensor implementation," 2016 8th Cairo International Biomedical Engineering Conference (CIBEC), 52-55, 2016.
doi:10.1109/CIBEC.2016.7836118

3. Ates, H. C., P. Q. Nguyen, L. Gonzalez-Macia, et al. "End-to-end design of wearable sensors," Nat. Rev. Mater., Vol. 7, 887-907, 2022.
doi:10.1038/s41578-022-00460-x

4. Vijayan, V., J. P. Connolly, J. Condell, N. McKelvey, and P. Gardiner, "Review of wearable devices and data collection considerations for connected health," Sensors (Basel), Vol. 21, No. 6, 5589, 2021.
doi:10.3390/s21165589

5. Iqbal, S. M. A., I. Mahgoub, E. Du, et al. "Advances in healthcare wearable devices," NPJ Flex Electron, Vol. 5, 9, 2021.
doi:10.1038/s41528-021-00107-x

6., https://iot-analytics.com/number-connected-iot-devices/.

7. Monti, G., L. Corchia, and L. Tarricone, "UHF wearable rectenna on textile materials," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3869-3873, Jul. 2013.
doi:10.1109/TAP.2013.2254693

8. Estrada, J., E. Kwiatkowski, A. Lopez-Yela, M. Borgonos-Garcia, D. Segovia, T. Barton, and Z. Popovic, "An octave bandwidth RF harvesting tee-shirt," 2019 IEEE Wireless Power Transfer Conference (WPTC), 1-4, Jun. 2019.

9. Eid, A., J. G. Hester, and M. M. Tentzeris, "5G as a wireless power grid," Sci. Rep., Vol. 11, No. 1, 1-9, 2021.
doi:10.1038/s41598-020-79500-x

10. Vital, D., S. Bhardwaj, and J. L. Volakis, "Textile-based large area RF-power harvesting system for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 2323-2331, Mar. 2020.
doi:10.1109/TAP.2019.2948521

11. Wagih, M., N. Hillier, S. Yong, A. S. Weddell, and S. Beeby, "RF-powered wearable energy harvesting and storage module based on E-textile coplanar waveguide rectenna and supercapacitor," IEEE Open Journal of Antennas and Propagation, Vol. 2, 302-314, 2021.
doi:10.1109/OJAP.2021.3059501

12. Wagih, M., A. S. Weddell, and S. Beeby, "Omnidirectional dual polarized low-profile textile rectenna with over 50% efficiency for sub-μW/cm2 wearable power harvesting," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 5, 2522-2536, 2020.
doi:10.1109/TAP.2020.3030992

13. Eid, A., J. Hester, A. Nauroze, et al. "A flexible compact rectenna for 2.40 Hz ISM energy harvesting applications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1887-1888, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608525

14. Chandravanshi, S., K. K. Katare, and M. J. Akhtar, "A flexible dual-band rectenna with full azimuth coverage," IEEE Access, Vol. 9, 27476-27484, 2021.
doi:10.1109/ACCESS.2021.3058239

15. Malik, B. T., V. Doychinov, S. A. Raza Zaidi, et al. "Flexible rectennas for wireless power transfer to wearable sensors at 24 GHz," 2019 Research, Invention, and Innovation Congress (RI2C), 1-5, Bangkok, Thailand, 2019, doi: 10.1109/RI2C48728.2019.89999.

16. Zhang, X., J. Grajal, J. L. Vazquez-Roy, et al. "Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting," Nature, Vol. 566, 368-372, 2019.
doi:10.1038/s41586-019-0892-1

17., Dupont Kapton FN, Available online: https://www.dupont.com/content/dam/Dupont2.0/Products/Electronics-and-imaging/Literature/DEC-Kapton-FN-datasheet.pdf, [(accessed on Jul. 3 2019)].

18. You, K. Y., H. K. Mun, J. Salleh, and Z. Abbas, "A small and slim coaxial probe for single rice grain moisture sensing," Sensors, Vol. 13, 2652-3663, 2013.

19. Lopez-Rodriguez, P., D. Escot-Bocanegra, D. Poyatos-Martinez, and F. Weinmann, "Comparison of metal-backed free-space and open-ended coaxial probe techniques for the dielectric characterization of aeronautical composites," Sensors, Vol. 16, 967, 2016.
doi:10.3390/s16070967

20. El Khamlichi, M., A. Alvarez Melcon, O. El Mrabet, M. A. Ennasar, and J. Hinojosa, "Flexible UHF RFID tag for blood tubes monitoring," Sensors (Basel), Vol. 19, No. 22, 4903, Nov. 9, 2019, PMID: 31717601; PMCID: PMC6891293.
doi:10.3390/s19224903

21., https://eu.mouser.com/datasheet/2/472/skyworks surface mount schottky diodes 200041w-1213983.pdf.

22. Bajtaoui, M., O. El Mrabet, M. A. Ennasar, and M. Khalladi, "A novel circular polarized rectenna with wide ranges of loads for wireless harvesting energy," Progress In Electromagnetics Research M, Vol. 106, 35-46, 2021.
doi:10.2528/PIERM21092107

23. Zeng, M., A. S. Andrenko, X. Liu, B. Zhu, Z. Li, and H.-Z. Tan, "Differential topology rectifier design for ambient wireless energy harvesting," 2016 IEEE International Conference on RFID Technology and Applications (RFID-TA), 97-101, Foshan, 2016.

24., CST Microwave Studio, 2020, [online] Available: www.cst.com.

25. Zhang, F., H. Nam, and J.-C. Lee, "A novel compact folded dipole architecture for 2.45 GHz rectenna application," 2009 Asia Paci c Microwave Conference, 2766-2769, Singapore, 2009.

26. Collado, A. and A. Georgiadis, "Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 60, No. 8, 2225-2234, Aug. 2013.
doi:10.1109/TCSI.2013.2239154

27. Palazzi, V., C. Kalialakis, F. Alimenti, et al. "Performance analysis of a ultra-compact low-power rectenna in paper substrate for RF energy harvesting," Proc. IEEE Topical Conf. Wireless Sensors Sensor Netw. (WiSNet), 65-68, Jan. 2017.

28. Kumar, D. and K. Chaudhary, "Design of differential source fed circularly polarized rectenna with embedded slots for harmonics suppression," Progress In Electromagnetics Research C, Vol. 84, 175-187, 2018.
doi:10.2528/PIERC18021401