Vol. 137
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-27
High-Sensitivity Refractive Index Sensor of Arc-Shape Photonic Crystal Fiber Based on Surface Plasmon Resonance
By
Progress In Electromagnetics Research C, Vol. 137, 29-38, 2023
Abstract
A surface plasmon resonance-based arc-shaped photonic crystal fiber high-sensitivity refractive index (RI) sensor is proposed. An open arc-shaped analyte channel is produced at the top of the fiber to facilitate RI detection of the analyte, and a gold film is coated inside the arc-shaped structure to stimulate mode coupling. The performance of the sensor is analyzed by using the finite element method (FEM). The results have demonstrated that the sensor can detect a sensing range of 1.35-1.42 with maximum RI sensitivity of 24900 nm/RIU and resolution of 4.01×10-6 RIU. Furthermore, the highest figure of merit (FOM) of 661.71 RIU-1 is obtained. Additionally, the effects of air hole size and air hole distance on sensitivity are investigated. Finally, the proposed sensor characterizes great potential in biomedical, chemical, and other fields due to its excellent performance.
Citation
Hai Ping Li, Juan Ruan, Xin Li, Qian Qian Zhang, Jian Jun Chen, Tao He, and Guangyong Wei, "High-Sensitivity Refractive Index Sensor of Arc-Shape Photonic Crystal Fiber Based on Surface Plasmon Resonance," Progress In Electromagnetics Research C, Vol. 137, 29-38, 2023.
doi:10.2528/PIERC23051401
References

1. Santoro, S., A. H. Avci, A. Politano, and E. Curcio, "The advent of thermoplasmonic membrane distillation," Chemical Society Reviews, Vol. 51, 6087-6125, 2022.
doi:10.1039/D0CS00097C

2. Abramovich, S., D. Dutta, C. Rizza, S. Santoro, M. Aquino, A. Cupolillo, J. Occhiuzzi, M. F. L. Russa, B. Ghosh, D. Farias, A. Locatelli, D. W. Boukhvalov, A. Agarwal, E. Curcio, M. B. Sadan, and A. Politano, "NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation," Small, Vol. 18, No. 31, 2201473, 2022.
doi:10.1002/smll.202201473

3. Elmaghraoui, D., A. Politano, and S. Jaziri, "Photothermal response of plasmonic nanofillers for membrane distillation," The Journal of Chemical Physics, Vol. 152, 114102, 2020.
doi:10.1063/1.5139291

4. Politano, A., G. D. Profio, E. Fontananova, V. Sanna, A. Cupolillo, and E. Curcio, "Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes," Desalination, Vol. 451, No. 1, 192-199, 2019.
doi:10.1016/j.desal.2018.03.006

5. Politano, A., P. Argurio, G. D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Advanced Materials, Vol. 29, No. 2, 1603504, 2016.
doi:10.1002/adma.201603504

6. Santoro, S., M. Aquino, C. Rizza, J. Occhiuzzi, D. Mastrippolito, G. D'Olimpio, A. H. Avci, J. D. Santis, V. Paolucci, L. Ottaviano, L. Lozzi, A. Ronen, M. Bar-Sadan, D. S. Han, A. Politano, and E. Curcio, "Lithium recovery through WS2 nanofillers-promoted solar photothermal membrane crystallization of LiCl," Desalination, Vol. 546, No. 15, 116186, 2023.
doi:10.1016/j.desal.2022.116186

7. Santoro, S., M. Aquino, C. Rizza, A. Cupolillo, D. W. Boukhvalov, G. D'Olimpio, S. Abramovich, A. Agarwal, M. B. Sadan, A. Politano, and E. Curcio, "Plasmonic nanofillers-enabled solar membrane crystallization for mineral recovery," Desalination, Vol. 563, No. 1, 116730, 2023.
doi:10.1016/j.desal.2023.116730

8. Avci, A. H., S. Santoro, A. Politano, M. Propato, M. Micieli, M. Aquino, W. J. Zhang, and E. Curcio, "Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion," Chemical Engineering and Processing --- Process Intensification, Vol. 164, 108382, 2021.
doi:10.1016/j.cep.2021.108382

9. Politano, A., A. Cupolillo, G. D. Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," Journal of Physics: Condensed Matter, Vol. 28, 363003, 2016.
doi:10.1088/0953-8984/28/36/363003

10. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave," Scientific Reports, Vol. 6, 20474, 2016.
doi:10.1038/srep20474

11. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901

12. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 8938-8946, 2018.
doi:10.1039/C8NR01395K

13. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics and photonics with topological insulators," APL Mater, Vol. 5, 035504, 2017.
doi:10.1063/1.4977782

14. Pogna, E. A. A., L. Viti, A. Politano, M. Brambilla, G. Scamarcio, M. S. Vitiello, and , "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nature Communications, Vol. 12, 6672, 2021.
doi:10.1038/s41467-021-26831-6

15. Politano, A., V. Formoso, and G. Chiarello, "Annealing effects on the plasmonic excitations of metal/metal interfaces," Applied Surface Science, Vol. 255, No. 11, 6038-6042, 2009.
doi:10.1016/j.apsusc.2009.01.062

16. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philosophical Magazine, Vol. 92, No. 6, 2012.
doi:10.1080/14786435.2011.634846

17. Qiu, G. Y., Z. B. Gai, L. Saleh, J. K. Tang, T. Gui, G. A. K. Kullak-Ublic, and J. Wang, "Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2," ACS Nano, Vol. 15, 7536, 2021.
doi:10.1021/acsnano.1c00957

18. Kang, H. K., W. Hong, Y. J. An, S. Yoo, H. J. Kwon, and Y. Nam, "Thermoplasmonic optical fiber for localized neural stimulation," ACS Nano, Vol. 14, 11406, 2020.
doi:10.1021/acsnano.0c03703

19. Herzog, J. B., M. W. Knight, and D. Natelson, "Thermoplasmonics: Quantifying plasmonic heating in single nanowires," Nano Letters, Vol. 14, 499, 2020.

20. Baffou, G., R. Quidant, and C. Girard, "Thermoplasmonics modeling: A Green's function approach," Physical Review B, Vol. 82, 165424, 2010.
doi:10.1103/PhysRevB.82.165424

21. Lee, J. H., B. C. Kim, B. K. Oh, and J. W. Choi, "Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1," Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 9, No. 7, 1018-1026, 2013.
doi:10.1016/j.nano.2013.03.005

22. Rifat, A. A., R. Hasan, R. Ahmed, and H. Butt, "Photonic crystal fiber-based plasmonic biosensor with external sensing approach," Journal of Nanophotonics, Vol. 12, No. 1, 012503, 2018.
doi:10.1117/1.JNP.12.012503

23. Maier, S. A., Plasmonics: Fundamentals and Applications, 1st Ed., Springer, 2007.
doi:10.1007/0-387-37825-1

24. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, 189, 2006.
doi:10.1126/science.1114849

25. Hayashi, S. and T. Okamoto, "Plasmonics: Visit the past to know the future," Journal of Physics D: Applied Physics, Vol. 45, 10927, 2014.

26. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927, 2014.
doi:10.1039/C4NR03143A

27. Politano, A., G. Chiarello, and C. Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Materials Science in Semiconductor Processing, Vol. 65, 88, 2017.
doi:10.1016/j.mssp.2016.05.002

28. Han, H. X., D. L. Hou, L. Zhao, N. N. Luan, L. Song, Z. H. Liu, Y. D. Lian, J. F. Liu, and Y. S. Hu, "Large detection-range plasmonic sensor based on an H-shaped photonic crystal fiber," Sensors, Vol. 20, No. 4, 1009, 2020.
doi:10.3390/s20041009

29. Jorgenson, R. C. and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical, Vol. 12, No. 3, 213-220, 1993.
doi:10.1016/0925-4005(93)80021-3

30. Li, H. P., J. Ruan, X. Li, G. Y. Wei, and T. He, "High-sensitivity temperature sensor based on surface plasmon resonance photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 116, 11-21, 2023.

31. Mei, C., Y. Wu, S. Qiu, J. H. Yuan, X. Zhou, and K. P. Long, "Design of dual-core photonic crystal fiber for temperature sensor based on surface plasmon resonance effect," Optics Communications, Vol. 508, 127838, 2022.
doi:10.1016/j.optcom.2021.127838

32. Ahmed, T., F. Haider, R. A. Aoni, and R. Ahmed, "Highly sensitive U-shaped micro-channel photonic crystal fiber-based plasmonic biosensor," Plasmonics, Vol. 16, No. 6, 2215-2223, 2021.
doi:10.1007/s11468-021-01477-8

33. Chen, X., L. Xia, and C. Li, "Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection," IEEE Photonics Journal, Vol. 10, No. 1, 1-9, 2018.

34. Yan, X., R. Fu, T. L. Cheng, and S. G. Li, "A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range," Sensors, Vol. 21, No. 11, 3782, 2021.
doi:10.3390/s21113782

35. Yang, H., M. Wang, G. Y. Wang, and J. Q. Yao, "Highly sensitive refractive index sensor based on SPR with silver and titanium dioxide coating," Optical and Quantum Electronics, Vol. 53, No. 6, 341, 2021.
doi:10.1007/s11082-021-02981-1

36. Zhang, S., J. Li, S. Li, Q. Liu, J. Wu, and Y. Guo, "Surface plasmon resonance sensor based on D-shaped photonic crystal fiber with two micro-openings," Journal of Physics D: Applied Physics, Vol. 51, No. 30, 305104, 2018.
doi:10.1088/1361-6463/aace72

37. An, G. W., S. G. Li, X. Yan, X. N. Zhang, Z. Y. Yuan, H. Y. Wang, Y. N. Zhang, X. P. Hao, Y. N. Shao, and Z. C. Han, "Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance," Plasmonics, Vol. 12, 465-471, 2017.
doi:10.1007/s11468-016-0286-2

38. Yang, Z., L. Xia, C. Li, X. Chen, and D. M. Liu, "A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection," Optics Communications, Vol. 430, 195-203, 2019.
doi:10.1016/j.optcom.2018.08.049

39. Wang, S. T., Y. H. Lu, W. B. Ma, N. Liu, and S. H. Fan, "D-shaped surface plasmon photonic crystal fiber temperature sensor," Plasmonics, Vol. 17, No. 5, 1911-1919, 2022.
doi:10.1007/s11468-022-01683-y

40. Pan, H. G., F. Pan, A. L. Zhang, C. B. Cao, and F. J. Xue, "Wide refractive index detection range surface plasmon resonance sensor based on D-shaped photonic crystal fiber," Optical and Quantum Electronics, Vol. 54, No. 6, 393, 2022.
doi:10.1007/s11082-022-03805-6

41. Zhang, Y., Z. Yi, Y. Shi, C. Liu, X. L. Li, J. W. Lv, L. Yang, and P. K. Chu, "Photonic fibre crystal sensor with a D-shape based on surface plasma resonance containing microfluidic channels for detection of a wide range of refractive indexes," Journal of Modern Optics, Vol. 69, No. 1, 1-11, 2022.
doi:10.1080/09500340.2021.1989068

42. Zhang, Z. C., J. H. Yuan, S. Qiu, G. Y. Zhou, X. Zhou, B. B. Yan, Q. Wu, K. R. Wang, and X. Z. Sang, "Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect," Chinese Physics B, Vol. 32, 034208, 2023.
doi:10.1088/1674-1056/ac785e