Vol. 133
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-06-23
Broadband and High-Efficiency Reflective Linear Polarizer
By
Progress In Electromagnetics Research C, Vol. 133, 261-269, 2023
Abstract
In this paper, we propose a wideband linear polarizer that utilizes metamaterial and metasurface techniques to achieve highly efficient polarization conversion. The proposed polarizer achieves a polarization conversion ratio exceeding 90% at 11.7-16.0 GHz, as confirmed by both simulated and experimental results. The effects of geometric parameters, incidence angle, and polarization angle on the performance of the polarizer are analyzed, and it is demonstrated that the polarizer maintains an extremely high polarization conversion efficiency even under wide-angle incidence. The polarization conversion mechanism is elucidated through the examination of eigenmode and surface current distribution. This work holds significant promise for the control of electromagnetic waves, making it essential for upcoming engineering applications.
Citation
Xiaojun Huang, Xiongwei Ma, Sihan Cui, and Huanhuan Gao, "Broadband and High-Efficiency Reflective Linear Polarizer," Progress In Electromagnetics Research C, Vol. 133, 261-269, 2023.
doi:10.2528/PIERC23051003
References

1. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas Propag. Mag., Vol. 54, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

2. Huang, X., X. Ma, X. Li, J. Fan, L. Guo, and H. Yang, "Simultaneous realization of polarization conversion for re ected and transmitted waves with bi-functional metasurface," Sci. Rep., Vol. 12, 2368, 2022.
doi:10.1038/s41598-022-06366-6

3. Song, Z. Y., Q. Chu, X. Shen, and Q. Liu, "Wideband high-efficient linear polarization rotators," Front. Phys., Vol. 13, 137803, 2018.
doi:10.1007/s11467-018-0779-x

4. Huang, X., X. Ma, H. Gao, L. Guo, and X. Li, "Ultra-wideband linear-polarization conversion metasurface with high-efficient asymmetric transmission," Appl. Phys. A --- Mater. Sci. Process., Vol. 129, 278, 2023.
doi:10.1007/s00339-023-06541-0

5. Li, N., J. Zhao, P. Tang, and Y. Cheng, "Design of all-metal three-dimensional anisotropic metamaterial for ultrabroadband terahertz reflective linear polarization convertor," Phys. Status Solidi, Vol. 2300104, 1-7, 2023.

6. Habashi, A., C. Ghobadi, and J. Nourinia, "A dual-broadband h-shaped metasurface for cross-polarization and asymmetric transmission with high stable incidence angle," AEU --- Int. J. Electron. Commun., Vol. 143, 154021, 2021.
doi:10.1016/j.aeue.2021.154021

7. Wong, A. M. H. and G. Eleftheriades, "Perfect anomalous reflection with a bipartite huygens' metasurface," Phys. Rev. X, Vol. 8, 011036, 2018.

8. Feng, M., X. Tian, J. Wang, M. Yin, S. Qu, and D. Li, "Broadband abnormal reflection based on a metal-backed gradient index liquid slab: An alternative to metasurfaces," J. Phys. D: Appl. Phys., Vol. 48, 245501, 2015.
doi:10.1088/0022-3727/48/24/245501

9. Nguyen, T. Q. H., T. K. T. Nguyen, T. Q. M. Nguyen, T. N. Cao, H. L. Phan, N. M. Luong, D. T. Le, X. K. Bui, C. L. Truong, and D. L. Vu, "Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications," Opt. Commun., Vol. 486, 126773, 2021.
doi:10.1016/j.optcom.2021.126773

10. Ding, F., Y. Chen, and S. I. Bozhevolnyi, "Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting," Photonics Res., Vol. 8, 707-714, 2020.
doi:10.1364/PRJ.386655

11. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas Wirel. Propag. Lett., Vol. 17, 1459-1463, 2018.
doi:10.1109/LAWP.2018.2849352

12. Noishiki, T., R. Kuse, and T. Fukusako, "Wideband metasurface polarization converter with double-square-shaped patch elements," Progress In Electromagnetics Research C, Vol. 105, 47-58, 2020.
doi:10.2528/PIERC20031006

13. Yu, J., Q.-R. Zheng, B. Zhang, H. Jiang, and K. Zou, "Multifunction cross polarization converter based on ultra-thin transmissive chiral metasurface in C and X bands," Progress In Electromagnetics Research M, Vol. 109, 205-216, 2022.
doi:10.2528/PIERM22021201

14. Li, N., J. Zhao, P. Tang, and Y. Cheng, "Broadband and high-efficient reflective linear-circular polarization convertor based on three-dimensional all-metal anisotropic metamaterial at terahertz frequencies," Opt. Commun., Vol. 541, 129544, 2023.
doi:10.1016/j.optcom.2023.129544

15. Ratni, B., A. De Lustrac, G. P. Piau, and S. N. Burokur, "Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface," Appl. Phys. Lett., Vol. 111, 214101, 2017.
doi:10.1063/1.4998556

16. Fei, P., G. A. E. Vandenbosch, W. H. Guo, X. Wen, D. Xiong, W. Hu, Q. Zheng, and X. Chen, "Versatile cross-polarization conversion chiral metasurface for linear and circular polarizations," Adv. Opt. Mater., Vol. 8, 2000194, 2020.
doi:10.1002/adom.202000194

17. Long, F., S. Yu, N. Kou, C. Zhang, Z. Ding, and Z. Zhang, "Wideband and high-efficiency planar chiral structure design for asymmetric transmission and linear polarization conversion," J. Appl. Phys., Vol. 127, 023104, 2020.
doi:10.1063/1.5129912

18. Cheng, Y., D. Yang, and X. Li, "Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region," Phys. B Condens. Matter, Vol. 640, 414047, 2022.
doi:10.1016/j.physb.2022.414047

19. Wang, X., J. Ding, B. Zheng, S. An, G. Zhai, and H. Zhang, "Simultaneous realization of anomalous reflection and transmission at two frequencies using Bi-functional metasurfaces," Sci. Rep., Vol. 8, 1876, 2018.
doi:10.1038/s41598-018-20315-2

20. Xu, J., R. Li, J. Qin, S. Wang, and T. Han, "Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface," Opt. Express, Vol. 26, 20913-20919, 2018.
doi:10.1364/OE.26.020913

21. Zhao, J., N. Li, and Y. Cheng, "All-dielectric inSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion," Opt. Commun., Vol. 536, 129372, 2023.
doi:10.1016/j.optcom.2023.129372

22. Gao, J., Y. Zhang, Y. Sun, and Q. Wu, "Ultra-wide band and multifunctional polarization converter based on dielectric metamaterial," Materials (Basel), Vol. 12, 3857, 2019.
doi:10.3390/ma12233857

23. Wu, Y., S. Huang, L. Deng, C. Tang, X. Gao, S. Fang, and L. Qiu, "Dual-band linear polarization converter based on multi-mode metasurface," Results Phys., Vol. 40, 105859, 2022.
doi:10.1016/j.rinp.2022.105859

24. Ahmed, F., M. Khan, and F. Tahir, "A multifunctional polarization transforming metasurface for C-, X-, and K-Band applications," IEEE Antennas Wirel. Propag. Lett., Vol. 20, 2186-2190, 2021.
doi:10.1109/LAWP.2021.3065717

25. Wu, L. W., H. Ma, R. Wu, Q. Xiao, Y. Gou, M. Wang, Z. Wang, L. Bao, H. Wang, M. Ye, and T. Cui, "Transmission-reflection controls and polarization controls of electromagnetic holograms by a reconfigurable anisotropic digital coding metasurface," Adv. Opt. Mater., Vol. 8, 2001065, 2020.
doi:10.1002/adom.202001065

26. Lin, B. Q., J. Guo, P. Chu, W. Huo, Z. Xing, B. Huang, and L. Wu, "Multiple-band linear-polarization conversion and circular polarization in reflection mode using a symmetric anisotropic metasurface," Phys. Rev. Appl., Vol. 9, 24038, 2018.
doi:10.1103/PhysRevApplied.9.024038

27. Su, J., Y. Guo, X. Chen, and W. Zhang, "A dual-wideband polarization-insensitive linear polarization converter based on metasurface," Progress In Electromagnetics Research M, Vol. 108, 213-222, 2022.
doi:10.2528/PIERM22012901

28. Yuan, L., L. Hou, and Z. Zhang, "Triple-band highly efficient multi-polarization converter based on reflective metasurface," Progress In Electromagnetics Research M, Vol. 102, 127-135, 2021.
doi:10.2528/PIERM21032703

29. Zhang, Z., X. Cao, J. Gao, and S. Li, "Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators," Radioengineering, Vol. 25, 436-441, 2016.
doi:10.13164/re.2016.0436

30. Huang, X., H. Yang, D. Zhang, and Y. Luo, "Ultrathin dual-band metasurface polarization converter," IEEE Trans. Antennas Propag., Vol. 67, 4636-4640, 2019.
doi:10.1109/TAP.2019.2911377