1. Selinis, I., K. Katsaros, M. Allayioti, S. Vahid, and R. Tafazoll, "The race to 5G era; LTE and Wi-Fi," IEEE Access, Vol. 6, 56598-56636, 2018.
doi:10.1109/ACCESS.2018.2867729
2. Simon, J., S. M. Shyni, E. A. E. Jebaseeli, and G. Janakiraman, "Design of massive MIMO dual band antenna for 5G cellular mobile communication," 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 586-591, 2020.
doi:10.1109/ICECA49313.2020.9297409
3. Hasturkoglu, S., M. Almarashli, and S. Lindenmeie, "A compact wideband terrestial MIMO- antenna set for 4G, 5G, WLAN and V2X and evaluation of its LTE-performance in an urban region," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, 2019.
4. Hasan, M. M., M. R. I. Faruque, and M. T. Islam, "Dual band metamaterial antenna for LTE/bluetooth/WiMAX system," Sci. Rep., Vol. 8, 1240, 2018.
doi:10.1038/s41598-018-19705-3
5. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304
6. Li, G., H. Zhai, Z. Ma, C. Liang, R. Yu, and S. Liu, "Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1128-1131, 2014.
doi:10.1109/LAWP.2014.2330065
7. Cheng, T., J. Tsai, W. Hung, and S. Chen, "Dual-band handset antenna based on multi-branch monopole for LTE/WWAN applications," 2016 International Symposium on Antennas and Propagation (ISAP), 24-25, Okinawa, Japan, 2016.
8. Moriyama, T., M. Manekiya, and M. Donelli, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
doi:10.2528/PIERC18012004
9. Tsai, C. and K. Wong, "Combined-type dual-wideband and triple-wideband LTE antennas for the tablet device," 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), 411-412, 2015.
doi:10.1109/APCAP.2015.7374426
10. Bhardwaj, S. and Y. Rahmat-Sami, "C-shaped, E-shaped and U-slotted patch antennas: Size, bandwidth and cross-polarization characterizations," 2012 6th European Conference on Antennas and Propagation (EUCAP), 1674-1677, 2012.
doi:10.1109/EuCAP.2012.6206679
11. Zhang, Y., H. Jin, and C. M. Li, "A compact dual-wideband monopole antenna with parasitic patch for 2G/3G/LTE/WLAN/WiMAX applications," 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), 1-4, 2017.
12. Mantash, M., S. Collardey, A. Tarot, and A. Press, "Dual-band WiFi and 4G LTE textile antenna," 2013 7th European Conference on Antennas and Propagation (EuCAP), 422-425, Gothenburg, Sweden, 2013.
13. Menon, S. K., G. Marchi, M. Donelli, M. Manekiya, and V. Mulloni, "Design of an ultra wide band antenna based on a SIW resonator," Progress In Electromagnetic Research C, Vol. 103, 187-193, 2020.
doi:10.2528/PIERC20020405
14. Robol, F. and M. Donelli, "Circularly polarized monopole hook antenna for ISM-band systems," Microwave and Optical Technology Letters, Vol. 60, No. 6, 2018.
15. Hua, Q., Y. Huang, A. Alieldin, C. Song, T. Jia, and X. Zhu, "A dual-band dual-polarized base station antenna using a novel feeding structure for 5G communications," IEEE Access, Vol. 8, 63710-63717, 2020.
doi:10.1109/ACCESS.2020.2984199
16. Li, J., X. Zhang, et al. "Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals," IEEE Access, Vol. 7, 71636-71644, 2019.
doi:10.1109/ACCESS.2019.2908969
17. Asif, M., D. A. Sehrai, S. H. Kiani, et al. "Design of a dual band SNG metamaterial based antenna for LTE 46/WLAN and Ka-band applications," IEEE Access, Vol. 9, 71553-71562, 2021.
doi:10.1109/ACCESS.2021.3077844
18. Tanmoy, M. M. R. H., S. I. Latif, A. T. Almutawa, F. Capolino, and M. M. Hossain, "Wide gain-bandwidth from an ultrathin high impedance surface-based leaky wave antenna using multi-feed excitation," 2020 Southeast Con., 1-2, 2020.
19. Yao, Y. and Z. Feng, "A novel band-notched ultra-wideband microstrip-line fed wide-slot antenna," 2006 Asia-Pacific Microwave Conference, 1976-1978, 2006.
20. Reazul Haque Tanmoy, M. M., S. I. Latif, A. T. Almutawa, and F. Capolino, "Small-scale beam scanning with an ultrathin high impedance surface-based leaky wave antenna with multiple feeds," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 17-20, Los Angeles, CA, USA, 2020.
21. Hossain, M. M., S. I. Latif, and E. A. Spencer, "Hybrid perturbations in stacked patch-ring circularly polarized microstrip antennas for CubeSat applications," IEEE Aerospace and Electronic Systems Magazine, Vol. 37, No. 3, 24-31, March 1, 2022.
doi:10.1109/MAES.2022.3141436
22. Kulkarni, A. N. and S. K. Sharma, "Frequency reconfigurable microstrip loop antenna covering LTE bands with MIMO implementation and wideband microstrip slot antenna all for portable wireless DTV media player," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 964-968, Feb. 2013.
doi:10.1109/TAP.2012.2223433
23. Henderson, K. Q., S. I. Latif, G. Lazarou, S. K. Sharma, A. Tabbal, and S. Saial, "Dual-stub loaded microstrip line-fed multi-slot printed antenna for LTE bands," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1743-1744, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608453
24. "Multi-slot antennas excited by novel dual-stub loaded microstrip lines for 4G LTE bands," Progress In Electromagnetics Research M, Vol. 75, 1-12, 2018.
doi:10.2528/PIERM18080901
25. Yuan, X.-T., Z. Chen, T. Gu, and T. Yuan, "A wideband PIFA-pair-based MIMO antenna for 5G smartphones," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 371-375, Mar. 2021.
doi:10.1109/LAWP.2021.3050337
26. Sim, C., H. Liu, and C. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 74-78, Jan. 2020.
doi:10.1109/LAWP.2019.2953334
27. Hossain, M. M., M. J. Alam, and S. I. Latif, "Orthogonal printed microstrip antenna arrays for 5G millimeter-wave applications," Micromachines, Vol. 13, No. 1, 53, 2022.
doi:10.3390/mi13010053
28. Zhao, A. and Z. Ren, "Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals," IEEE Access, Vol. 7, 93761-93771, 2019.
doi:10.1109/ACCESS.2019.2913466
29. Wolosinski, G., V. Fusco, and P. Rulikowski, "Mode-based MIMO antenna with polarization and pattern diversity for base station applications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 493-494, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608704
30. Park, S., V. Nguyen, and R. S. Aziz, "Multi-band, dual polarization, dual antennas for beam reconfigurable antenna system for small cell base station (Invited paper)," 2014 International Workshop on Antenna Technology: Small Antennas, Novel EM Structures and Materials, and Applications (iWAT), 159-160, 2014.
doi:10.1109/IWAT.2014.6958625
31. Liu, H., Y. Liu, and S. Gong, "An ultra-wideband horizontally polarized omnidirectional connected vivaldi array antenna," 2016 International Symposium on Antennas and Propagation (ISAP), 798-799, 2016.
32. Kim, H., J. Jeon, M. K. Khattak, S. Kahng, S. Yoo, and E. Shin, "Design of a dual-band LTE MIMO antenna to be embedded in automotives," 2015 International Symposium on Antennas and Propagation (ISAP), 1-3, 2015.
33. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, 705-707, 2003.
doi:10.1049/el:20030495
34. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, 2014.