Vol. 134
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-05
Multi-Slot Antennas Excited by Novel Dual-Stub Loaded Microstrip Lines for 4G/5G Bands
By
Progress In Electromagnetics Research C, Vol. 134, 131-141, 2023
Abstract
This paper presents a low-profile, stub-loaded multi-slot antenna that operates across 850 MHz to 4500 MHz. Remarkably, the new design meets the call of covering wideband frequencies used by many 4G and 5G New Radio bands from UHF to C bands. The antenna consists of two wide slots on the ground plane. Each slot comprises a straight segment connected to a larger circular slot. A novel microstrip feed line loaded with dual circular stubs excites the multi-slot antenna. The slots and the feed lines are printed on each side of the dielectric substrate. This novel design offers pattern diversion capacity based on port excitation. Two prototypes were fabricated and tested to verify multiple simulation results including bandwidth, isolation, and group delays. A close consistent of measured and simulated results validates the design. Concurrently, good isolation between ports and nearly omnidirectional gain patterns are observed over the band. Further, the form factor of the proposed antenna makes it a suitable solution for modern 4G and 5G handheld devices.
Citation
Muhammad Mubasshir Hossain, M. M. Reazul Haque Tanmoy, and Saeed I. Latif, "Multi-Slot Antennas Excited by Novel Dual-Stub Loaded Microstrip Lines for 4G/5G Bands," Progress In Electromagnetics Research C, Vol. 134, 131-141, 2023.
doi:10.2528/PIERC23051001
References

1. Selinis, I., K. Katsaros, M. Allayioti, S. Vahid, and R. Tafazoll, "The race to 5G era; LTE and Wi-Fi," IEEE Access, Vol. 6, 56598-56636, 2018.
doi:10.1109/ACCESS.2018.2867729

2. Simon, J., S. M. Shyni, E. A. E. Jebaseeli, and G. Janakiraman, "Design of massive MIMO dual band antenna for 5G cellular mobile communication," 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 586-591, 2020.
doi:10.1109/ICECA49313.2020.9297409

3. Hasturkoglu, S., M. Almarashli, and S. Lindenmeie, "A compact wideband terrestial MIMO- antenna set for 4G, 5G, WLAN and V2X and evaluation of its LTE-performance in an urban region," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, 2019.

4. Hasan, M. M., M. R. I. Faruque, and M. T. Islam, "Dual band metamaterial antenna for LTE/bluetooth/WiMAX system," Sci. Rep., Vol. 8, 1240, 2018.
doi:10.1038/s41598-018-19705-3

5. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

6. Li, G., H. Zhai, Z. Ma, C. Liang, R. Yu, and S. Liu, "Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1128-1131, 2014.
doi:10.1109/LAWP.2014.2330065

7. Cheng, T., J. Tsai, W. Hung, and S. Chen, "Dual-band handset antenna based on multi-branch monopole for LTE/WWAN applications," 2016 International Symposium on Antennas and Propagation (ISAP), 24-25, Okinawa, Japan, 2016.

8. Moriyama, T., M. Manekiya, and M. Donelli, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
doi:10.2528/PIERC18012004

9. Tsai, C. and K. Wong, "Combined-type dual-wideband and triple-wideband LTE antennas for the tablet device," 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), 411-412, 2015.
doi:10.1109/APCAP.2015.7374426

10. Bhardwaj, S. and Y. Rahmat-Sami, "C-shaped, E-shaped and U-slotted patch antennas: Size, bandwidth and cross-polarization characterizations," 2012 6th European Conference on Antennas and Propagation (EUCAP), 1674-1677, 2012.
doi:10.1109/EuCAP.2012.6206679

11. Zhang, Y., H. Jin, and C. M. Li, "A compact dual-wideband monopole antenna with parasitic patch for 2G/3G/LTE/WLAN/WiMAX applications," 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), 1-4, 2017.

12. Mantash, M., S. Collardey, A. Tarot, and A. Press, "Dual-band WiFi and 4G LTE textile antenna," 2013 7th European Conference on Antennas and Propagation (EuCAP), 422-425, Gothenburg, Sweden, 2013.

13. Menon, S. K., G. Marchi, M. Donelli, M. Manekiya, and V. Mulloni, "Design of an ultra wide band antenna based on a SIW resonator," Progress In Electromagnetic Research C, Vol. 103, 187-193, 2020.
doi:10.2528/PIERC20020405

14. Robol, F. and M. Donelli, "Circularly polarized monopole hook antenna for ISM-band systems," Microwave and Optical Technology Letters, Vol. 60, No. 6, 2018.

15. Hua, Q., Y. Huang, A. Alieldin, C. Song, T. Jia, and X. Zhu, "A dual-band dual-polarized base station antenna using a novel feeding structure for 5G communications," IEEE Access, Vol. 8, 63710-63717, 2020.
doi:10.1109/ACCESS.2020.2984199

16. Li, J., X. Zhang, et al. "Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals," IEEE Access, Vol. 7, 71636-71644, 2019.
doi:10.1109/ACCESS.2019.2908969

17. Asif, M., D. A. Sehrai, S. H. Kiani, et al. "Design of a dual band SNG metamaterial based antenna for LTE 46/WLAN and Ka-band applications," IEEE Access, Vol. 9, 71553-71562, 2021.
doi:10.1109/ACCESS.2021.3077844

18. Tanmoy, M. M. R. H., S. I. Latif, A. T. Almutawa, F. Capolino, and M. M. Hossain, "Wide gain-bandwidth from an ultrathin high impedance surface-based leaky wave antenna using multi-feed excitation," 2020 Southeast Con., 1-2, 2020.

19. Yao, Y. and Z. Feng, "A novel band-notched ultra-wideband microstrip-line fed wide-slot antenna," 2006 Asia-Pacific Microwave Conference, 1976-1978, 2006.

20. Reazul Haque Tanmoy, M. M., S. I. Latif, A. T. Almutawa, and F. Capolino, "Small-scale beam scanning with an ultrathin high impedance surface-based leaky wave antenna with multiple feeds," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 17-20, Los Angeles, CA, USA, 2020.

21. Hossain, M. M., S. I. Latif, and E. A. Spencer, "Hybrid perturbations in stacked patch-ring circularly polarized microstrip antennas for CubeSat applications," IEEE Aerospace and Electronic Systems Magazine, Vol. 37, No. 3, 24-31, March 1, 2022.
doi:10.1109/MAES.2022.3141436

22. Kulkarni, A. N. and S. K. Sharma, "Frequency reconfigurable microstrip loop antenna covering LTE bands with MIMO implementation and wideband microstrip slot antenna all for portable wireless DTV media player," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 964-968, Feb. 2013.
doi:10.1109/TAP.2012.2223433

23. Henderson, K. Q., S. I. Latif, G. Lazarou, S. K. Sharma, A. Tabbal, and S. Saial, "Dual-stub loaded microstrip line-fed multi-slot printed antenna for LTE bands," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1743-1744, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608453

24. "Multi-slot antennas excited by novel dual-stub loaded microstrip lines for 4G LTE bands," Progress In Electromagnetics Research M, Vol. 75, 1-12, 2018.
doi:10.2528/PIERM18080901

25. Yuan, X.-T., Z. Chen, T. Gu, and T. Yuan, "A wideband PIFA-pair-based MIMO antenna for 5G smartphones," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 371-375, Mar. 2021.
doi:10.1109/LAWP.2021.3050337

26. Sim, C., H. Liu, and C. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 74-78, Jan. 2020.
doi:10.1109/LAWP.2019.2953334

27. Hossain, M. M., M. J. Alam, and S. I. Latif, "Orthogonal printed microstrip antenna arrays for 5G millimeter-wave applications," Micromachines, Vol. 13, No. 1, 53, 2022.
doi:10.3390/mi13010053

28. Zhao, A. and Z. Ren, "Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals," IEEE Access, Vol. 7, 93761-93771, 2019.
doi:10.1109/ACCESS.2019.2913466

29. Wolosinski, G., V. Fusco, and P. Rulikowski, "Mode-based MIMO antenna with polarization and pattern diversity for base station applications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 493-494, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608704

30. Park, S., V. Nguyen, and R. S. Aziz, "Multi-band, dual polarization, dual antennas for beam reconfigurable antenna system for small cell base station (Invited paper)," 2014 International Workshop on Antenna Technology: Small Antennas, Novel EM Structures and Materials, and Applications (iWAT), 159-160, 2014.
doi:10.1109/IWAT.2014.6958625

31. Liu, H., Y. Liu, and S. Gong, "An ultra-wideband horizontally polarized omnidirectional connected vivaldi array antenna," 2016 International Symposium on Antennas and Propagation (ISAP), 798-799, 2016.

32. Kim, H., J. Jeon, M. K. Khattak, S. Kahng, S. Yoo, and E. Shin, "Design of a dual-band LTE MIMO antenna to be embedded in automotives," 2015 International Symposium on Antennas and Propagation (ISAP), 1-3, 2015.

33. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, 705-707, 2003.
doi:10.1049/el:20030495

34. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, 2014.