Vol. 137
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-28
Low Profile Wideband Polarization Rotation Reflective Metasurface
By
Progress In Electromagnetics Research C, Vol. 137, 39-51, 2023
Abstract
A low profile metasurface, which rotates the polarisation of incident electromagnetic wave upon reflection, is presented in this study. The design, which works over a large bandwidth of 67%, is achieved by combining the effect of a circle and a triangle forming a unit cell. By proper modification, the array is found to be useful in RCS reduction over a broad frequency range. Unlike many earlier designs, this structure is of single layer and can be fabricated using standard process on a thin substrate which is inexpensive and easily available. The results are presented with simulation and experiment.
Citation
Karamkulambel Kunjappan Indhu, Abhilash Achariparambil, Paulbert Thomas, Ramakrishnan Anil Kumar, Deepti Das Krishna, and Chandroth K. Aanandan, "Low Profile Wideband Polarization Rotation Reflective Metasurface," Progress In Electromagnetics Research C, Vol. 137, 39-51, 2023.
doi:10.2528/PIERC23050501
References

1. Freialdenhoven, T., T. Bertuch, S. Stanko, D. Notel, D. I. L. Vorst, and T. Dallmann, "Design of a polarization rotating SIW-based reflector for polarimetric radar application," IEEE Trans. Antennas Propag., Vol. 68, No. 11, 7414-7422, 2020.
doi:10.1109/TAP.2020.3001430

2. Nguyen, B., J. Lanteri, J.-Y. Dauvignac, C. Pichot, and C. Migliaccio, "94 GHz folded Fresnel reflector using C-patch elements," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3373-3381, 2008.
doi:10.1109/TAP.2008.2005452

3. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 179-188, 2015.
doi:10.1109/TAP.2015.2502981

4. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S. Gong, "A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3291-3295, 2017.
doi:10.1109/TAP.2017.2694879

5. Zheng, Q., C. Guo, H. Li, and J. Ding, "Broadband radar cross-section reduction using polarization conversion metasurface," International Journal of Microwave and Wireless Technologies, Vol. 10, 197-206, January 2018.
doi:10.1017/S1759078717001477

6. Fang, W., D. G. Fan, X., Y. Xie, X. C. Liu, S. N. Sun, and P. Chen, "A broadband radar cross section reduction metasurface based on polarization conversion and scattering cancellation," IEEE Xplore, Vol. 15, August 2019.

7. Yin, J. Y., H. J. Sun, and L. Zhang, "An ultra-wideband polarization conversion metasurface and its application in RCS reduction," Progress In Electromagnetics Research Letters, Vol. 89, 29-36, 2020.
doi:10.2528/PIERL19091003

8. Jeyaraj, J. P. G. and A. Swaminathan, "Broadband RCS reduction in microstrip patch antenna using L-shape stepped polarization rotation reflective surface," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, 2018.

9. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," International Journal of Antennas and Propagation, Vol. 64, 326-331, 2016.
doi:10.1109/TAP.2015.2497352

10. Gao, X., X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Trans. Antennas Propag., Vol. 63, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392

11. Lin, B. Q., X. Y. Da, J. L. Wu, W. Li, Y. W. Fang, and Z. H. Zhu, "Ultra-wideband and high-efficiency cross polarization converter based on anisotropic metasurface," Microw. Opt. Technol. Lett., Vol. 58, 2402-2405, 2016.
doi:10.1002/mop.30056

12. Moghadam, M. S. J., M. Akbari, F. Samadi, and A.-R. Sebak, "Wideband cross polarization rotation based on reflective anisotropic surfaces," IEEE Access, Vol. 6, 15919-15925, 2018.
doi:10.1109/ACCESS.2018.2802778

13. Guo, L., S. Li, X. Jiang, et al. "Ultra-wideband polarization rotation reflective metasurface based on monolayer rhombus hollow structure," AIP Advances, Vol. 8, 095205, 2018.
doi:10.1063/1.5030790

14. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

15. Zhao, J., N. Li, and Y. Cheng, "All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion," Optics Communications, Vol. 536, 129372, 2023.
doi:10.1016/j.optcom.2023.129372

16. Jiang, H., J. Wang, S. Zhao, L. H. Ye, H. Zhang, and W. Zhao, "Active optical switch and polarization-selective absorption in a VO2 based metasurface in THz region," Optics Communications, Vol. 536, 129380, 2023.
doi:10.1016/j.optcom.2023.129380

17. Cheng, Y., D. Yang, and X. Li, "Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region," Physica B, Vol. 640, 414047, 2022.
doi:10.1016/j.physb.2022.414047

18. Yang, D., Y. Cheng, F. Chen, H. Luo, and L. Wu, "Efficiency tunable broadband terahertz graphene metasurface for circular polarization anomalous reflection and plane focusing effect," Diamond & Related Materials, Vol. 131, 109605, 2023.
doi:10.1016/j.diamond.2022.109605

19. Sorathiyal, V., S. Lavadiya, B. Parmar, S. Das, M. Krishna, O. S. Faragallah, M. Baz, M. M. A. Eid, and A. N. Z. Rashed, "Numerical investigation of the tunable polarizer using gold array and graphene metamaterial structure for an infrared frequency range," Applied Physics B, Vol. 128, 2022.

20. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "Novel design of ultra-broadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Trans. Antennas Propag., Vol. 65, No. 10, 5406-5417, 2017.
doi:10.1109/TAP.2017.2734069

21. Zaker, R. and A. Sadeghzadeh, "Wideband radar cross section reduction using a novel design of artificial magnetic conductor structure with a triple layer chessboard configuration," Int. J. RF Microw. Comput.-Aided Eng., Vol. 29, No. 2, 2019.
doi:10.1002/mmce.21545

22. Xue, J., W. Jiang, and S. Gong, "Chessboard AMC surface based on quasi-fractal structure for wideband RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 201-204, 2018.
doi:10.1109/LAWP.2017.2780085

23. Chen, W., C. A. Balanis, and C. R. Birtcher, "Dual wide-band checkerboard surfaces for radar cross section reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4133-4138, 2016.
doi:10.1109/TAP.2016.2583505

24. Ghayekhloo, A., M. Afsahi, and A. A. Orouji, "An optimized checkerboard structure for cross-section reduction: Producing a coating surface for bistatic radar using the equivalent electric circuit model," IEEE Antennas Propag. Mag., Vol. 60, No. 5, 78-85, 2018.
doi:10.1109/MAP.2018.2859165

25. Khalaj-Amirhosseini, M. and M. Khanjarian, "Radar cross section reduction using polarization cancellation approach," Progress In Electromagnetics Research Letters, Vol. 74, 107-110, 2018.
doi:10.2528/PIERL18020401

26. Patel, K. and M. Joshi, "Broadband radar cross section reduction of microstrip antenna using polarization conversion metasurface," Progress In Electromagnetics Research B, Vol. 96, 67-86, 2022.
doi:10.2528/PIERB22060405

27. Yang, J. J., Y. Z. Cheng, C. C. Ge, and R. Z. Gong, "Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction," Materials, Vol. 11, 2018.
doi:10.3390/ma12010067

28. Mei, Z. L., X. M. Ma, C. Lu, and Y. D. Zhao, "High-efficiency and wide bandwidth linear polarization converter based on double U-shaped metasurface," AIP Adv., Vol. 7, 125323, 2017.
doi:10.1063/1.5003446

29. Xu, J., R. Li, J. Qin, S. Wang, and T. Han, "Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface," Optics Express, Vol. 26, No. 16, 20913, 2018.
doi:10.1364/OE.26.020913

30. Kamal, B., J. Chen, Y. Yingzeng, J. Ren, S. Ullah, and W. U. R. Khan, "High efficiency and ultra-wideband polarization converter based on an L-shaped metasurface," Opt. Mater. Express, Vol. 11, 1343-1352, 2021.
doi:10.1364/OME.423324

31. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S. Gong, "Broadband polarization rotation reflective surfaces and their application to RCS reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 179-188, 2016.
doi:10.1109/TAP.2015.2502981

32. Li, S. J., X. Y. Cao, L. M. Xu, et al. "Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm," Sci. Rep., Vol. 6, No. 37409, 2016.

33. Ameri, E., S. H. Esmaeli, and S. H. Sedighy, "Ultra wideband radar cross section reduction by using polarization conversion metasurfaces," Scientific Reports, No. 478, 2019.

34. Mu, X., M. Lv, and T. Ni, "Design of an ultra-broadband polarization rotating reflective surface for the reduction of radar cross section," Progress In Electromagnetics Research M, Vol. 114, 69-78, 2022.
doi:10.2528/PIERM22062705

35. Jeyaraj, J. P. G. and A. Swaminathan, "An efficient reflective polarization rotation meta surface for broadband RCS reduction," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 7, 2018.

36. Chen, W. K., J. F. Shi, Z. Y. Niu, et al. "Broadband polarization conversion metasurface for radar cross section reduction," ICMMT, 2018.