1. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
doi:10.1109/ACCESS.2013.2260813
2. Fatah, S. Y. A., E. K. Hamad, W. Swelam, A. M. M. A. Allam, and H. A. Mohamed, "Design of compact 4-port MIMO antenna based on Minkowski fractal shape DGS for 5G applications," Progress In Electromagnetics Research C, Vol. 113, 123-136, 2021.
doi:10.2528/PIERC21042703
3. Emara, H. M., S. K. El Dyasti, H. H. Ghouz, M. F. A. Sree, and S. Y. A. Fatah, "Compact high gain microstrip array antenna using DGS structure for 5G applications," Progress In Electromagnetics Research C, Vol. 130, 213-225, 2023.
doi:10.2528/PIERC22122110
4. Rappaport, T. S., Y. Xing, O. Kanhere, et al. "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019, doi: 10.1109/ACCESS.2019.2921522.
doi:10.1109/ACCESS.2019.2921522
5. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 2011, doi: 10.1109/MCOM.2011.5783993.
doi:10.1109/MCOM.2011.5783993
6. Wu, K., M. Bozzi, and N. J. G. Fonseca, "Substrate integrated transmission lines: Review and applications," IEEE Journal of Microwaves, Vol. 1, No. 1, 345-363, Jan. 2021, doi: 10.1109/JMW.2020.3034379.
doi:10.1109/JMW.2020.3034379
7. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020, doi: 10.1109/ACCESS.2020.3020952.
doi:10.1109/ACCESS.2020.3020952
8. Ali AbdElraheem, M., M. Mamdouh M. Ali, I. A, and A. R. Sebak, "Ridge gap waveguide beamforming components and antennas for millimeter-wave applications," Hybrid Planar --- 3D Waveguiding Technologies, Jan. 2023, doi: 10.5772/intechopen.105653.
9. Rambabu, K. and J. Bornemann, "Analysis and design of proled multi aperture stripline-to-microstrip couplers," IEE Proc.-Microw., Antennas Propag., Vol. 150, No. 6, 484-488, Dec. 2003.
doi:10.1049/ip-map:20031086
10. Jaisson, D., "Multilayer microstrip directional coupler with discrete coupling," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 9, 1591-1595, Sep. 2000.
doi:10.1109/22.869015
11. Kildal, P.-S., E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, "Local metamaterial-based waveguides in gaps between parallel metal plates," IEEE Antennas Wireless Propag. Lett., Vol. 8, No. 4, 84-87, Apr. 2009.
doi:10.1109/LAWP.2008.2011147
12. Pucci, E., E. Rajo-Iglesias, and P.-S. Kildal, "New microstrip gap waveguide on mushroom-type EBG for packaging of microwave components," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 3, 129-131, Mar. 2012.
doi:10.1109/LMWC.2011.2182638
13. Mahmoud Ali, M. M., S. I. Shams, and A. Sebak, "Ultra-wideband printed ridge gap waveguide hybrid directional coupler for millimetre wave applications," IET Microw. Antennas Propag., Vol. 13, 1181-1187, 2019, https://doi.org/10.1049/iet-map.2018.5511.
doi:10.1049/iet-map.2018.5511
14. Ali, M. M. M. and A. Sebak, "Compact printed ridge gap waveguide crossover for future 5G wireless communication system," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 7, 549-551, Jul. 2018.
doi:10.1109/LMWC.2018.2835149
15. Zhang, J., X. Zhang, and D. Shen, "Design of substrate integrated gap waveguide," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, 1-4, doi: 10.1109/MWSYM.2016.7540186.
16. Shen, D., K. Wang, and X. Zhang, "A substrate integrated gap waveguide based wideband 3-dB coupler for 5G applications," IEEE Access, Vol. 6, 66798-66806, 2018, doi: 10.1109/ACCESS.2018.2879438.
doi:10.1109/ACCESS.2018.2879438
17. Kildal, P.-S., "Waveguides and transmission lines in gaps between parallel conducting surfaces,", Patent US20110181373A1, 2009.
18. Shams, S. I. and A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3849-3855, Oct. 2017, doi: 10.1109/TMTT.2017.2690298.
doi:10.1109/TMTT.2017.2690298
19. Ali, M. M. M., M. S. El-Gendy, M. Al-Hasan, I. B. Mabrouk, A. Sebak, and T. A. Denidni, "A systematic design of a compact wideband hybrid directional coupler based on printed RGW technology," IEEE Access, Vol. 9, 56765-56772, 2021.
doi:10.1109/ACCESS.2021.3071758
20. Ali, M. M. M., S. I. Shams, and A. R. Sebak, "Printed ridge gap waveguide 3-dB coupler: Analysis and design procedure," IEEE Access, Vol. 6, 8501-8509, 2018.
doi:10.1109/ACCESS.2017.2784801
21. Nasr, M. A. and A. A. Kishk, "Analysis and design of broadband ridge-gap waveguide tight and loose hybrid couplers," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 8, 3368-3378, Aug. 2020.
doi:10.1109/TMTT.2020.3002167
22. Afifi, I. and A. R. Sebak, "Wideband printed ridge gap rat-race coupler for differential feeding antenna," IEEE Access, Vol. 8, 78228-78235, 2020.
doi:10.1109/ACCESS.2020.2990169
23. Abbas, M. A., M. F. Cengiz, A. M. M. A. Allam, D. E. Fawzy, H. M. Elhennawy, and M. F. A. Sree, "A novel circular recongurable metasurface-based compact UWB hybrid coupler for Ku-band applications," IEEE Access, Vol. 10, 129781-129790, 2022, doi: 10.1109/ACCESS.2022.3228110.
doi:10.1109/ACCESS.2022.3228110
24. Shari Sorkherizi, M. and A. A. Kishk, "Transition from microstrip to printed ridge gap waveguide for millimeter-wave application," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1588-1589, Vancouver, BC, Canada, 2015, doi: 10.1109/APS.2015.7305183.
25. El-Din, M. S. H. S., H. El-Hennawy, A. M. M. A. Allam, et al. "Approach for determination of the stop band for ridge gap waveguide," 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), 72-75, Antalya, Turkey, 2020, doi: 10.1109/ICEEE49618.2020.9102494.
26., https://scdn.rohde-schwarz.com/ur/pws/dl downloads/dl common library/dl brochures and data- sheets/pdf 1/ZVA dat-sw en 5213-5680-22 v1400.pdf. (Accessed on 20 12 2021).
27. Zhao, Z. and T. A. Denidni, "Millimeter-wave printed-RGW hybrid coupler with symmetrical square feed," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 2, 156-159, Feb. 2020.
doi:10.1109/LMWC.2019.2960475