Vol. 133
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-05-24
Deep Learning Assisted Distorted Born Iterative Method for Solving Electromagnetic Inverse Scattering Problems
By
Progress In Electromagnetics Research C, Vol. 133, 65-79, 2023
Abstract
This paper presents the deep learning assisted distorted Born iterative method (DBIM) for permittivity reconstruction of dielectric objects. The inefficiency of DBIM to reconstruct strong scatterers can be overcome if it is supported with Convolutional Neural Network (CNN). A novel approach, cascaded CNN is used to obtain a fine resolution estimate of the permittivity distribution. The CNN is trained using images consisting of MNIST digits, letters, and circular objects. The proposed model is tested on synthetic data with a different signal-to-noise ratio (SNR) and various contrast profiles. Thereafter, it is verified by means of experimental data provided by the Institute of Fresnel, France. Reconstruction results show that the proposed inversion method outperforms the conventional DBIM method in terms of accuracy as well as convergence rate.
Citation
Harisha Shimoga Beerappa, Mallikarjun Erramshetty, and Amit Magdum, "Deep Learning Assisted Distorted Born Iterative Method for Solving Electromagnetic Inverse Scattering Problems," Progress In Electromagnetics Research C, Vol. 133, 65-79, 2023.
doi:10.2528/PIERC23040702
References

1. Pastorino, M., Microwave Imaging, John Wiley & Sons, 2010.
doi:10.1002/9780470602492

2. Nikolova, N. K., Introduction to Microwave Imaging, Cambridge University Press, 2017.
doi:10.1017/9781316084267

3. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607, 1997.
doi:10.1088/0266-5611/13/6/013

4. Chew, W. C. and Y.-M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

5. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 42-49, 2009.
doi:10.1109/TGRS.2009.2025122

6. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Transactions on Image Processing, Vol. 26, No. 9, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099

7. Sun, Y., Z. Xia, and U. S. Kamilov, "Efficient and accurate inversion of multiple scattering with deep learning," Optics Express, Vol. 26, No. 11, 14678-14688, 2018.
doi:10.1364/OE.26.014678

8. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2018.
doi:10.1109/TGRS.2018.2869221

9. Li, L., L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, T. J. Cui, and , "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1818-1825, 2018.

10. Yao, H. M., E. Wei, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 2254-2258, 2019.
doi:10.1109/LAWP.2019.2925578

11. Sanghvi, Y., Y. Kalepu, and U. K. Khankhoje, "Embedding deep learning in inverse scattering problems," IEEE Transactions on Computational Imaging, Vol. 6, 46-56, 2019.

12. Anjit, T., R. Benny, P. Cherian, and P. Mythili, "Non-iterative microwave imaging solutions for inverse problems using deep learning," Progress In Electromagnetics Research M, Vol. 102, 53-63, 2021.
doi:10.2528/PIERM21021304

13. Yin, W., J. Ge, P. Meng, and F. Qu, "A neural network method for the inverse scattering problem of impenetrable cavities," Electronic Research Archive, Vol. 28, No. 2, 1123-1142, 2020.
doi:10.3934/era.2020062

14. Meng, P., X. Wang, and W. Yin, "A dynamical system view on recurrent neural networks," Electronic Research Archive, Vol. 30, No. 1, 257-271, 2022.
doi:10.3934/era.2022014

15. Chen, B., Y. Guo, F. Ma, and Y. Sun, "Numerical schemes to reconstruct three-dimensional time- dependent point sources of acoustic waves," Inverse Problems, Vol. 36, No. 7, 075009, 1-21, 2020.

16. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015.

17. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, No. 6, S117, 2005.
doi:10.1088/0266-5611/21/6/S09

18. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338

19. Peterson, M. R. and S. L. Ray, Computational Methods for Electromagnetics, Wiley-IEEE Press, 1998.

20. Wang, W. and S. Zhang, "Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 11, 1292-1296, 1992.
doi:10.1109/8.202706

21. Li, D., "The MNIST database of handwritten digit images for machine learning research," IEEE Signal Processing Magazine, Vol. 29, No. 6, 141-142, 2012.
doi:10.1109/MSP.2012.2211477

22. Magdum, A., M. Erramshetty, and R. P. K. Jagannath, "An exponential filtering based inversion method for microwave imaging," Radioengineering, Vol. 30, No. 3, 496-503, 2021.
doi:10.13164/re.2021.0496

23. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, Vol. 13, No. 4, 600-612, 2004.
doi:10.1109/TIP.2003.819861

24. Vargas, J. O., A. C. Batista, L. S. Batista, and R. Adriano, "On the computational complexity of the conjugate-gradient method for solving inverse scattering problems," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 17, 2323-2334, 2021.
doi:10.1080/09205071.2021.1946862

25. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 19, No. 18, 4050, 2019.
doi:10.3390/s19184050

26. Wei, Z., D. Liu, and X. Chen, "Dominant-current deep learning scheme for electrical impedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 9, 2546-2555, 2019.
doi:10.1109/TBME.2019.2891676

27. Wei, Z. and X. Chen, "Physics-inspired convolutional neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6138-6148, 2019.
doi:10.1109/TAP.2019.2922779

28. Kandel, I. and M. Castelli, "The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset," ICT Express, Vol. 6, No. 4, 312-315, 2020.
doi:10.1016/j.icte.2020.04.010

29. Ye, X., Y. Bai, R. Song, K. Xu, and J. An, "An inhomogeneous background imaging method based on generative adversarial network," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 11, 4684-4693, 2020.
doi:10.1109/TMTT.2020.3015495

30. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the born and Rytov approximations: A nonlinear approach to electromagnetic scattering," Journal of Geophysical Research: Solid Earth, Vol. 98, No. B2, 1759-1775, 1993.
doi:10.1029/92JB02324

31. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, 2019.

32. Chew, W. C. and Q.-H. Liu, "Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, 878-884, 1994.
doi:10.1109/36.298015

33. He, K. and J. Sun, "Convolutional neural networks at constrained time cost," IEEE Conference on Computer Vision and Pattern Recognition, 5353-5360, 2015.

34. Zhang, L., K. Xu, R. Song, X. Ye, G. Wang, and X. Chen, "Learning-based quantitative microwave imaging with a hybrid input scheme," Electronic Research Archive, Vol. 28, No. 24, 15007-15013, 2020.