1. Pastorino, M., Microwave Imaging, John Wiley & Sons, 2010.
doi:10.1002/9780470602492
2. Nikolova, N. K., Introduction to Microwave Imaging, Cambridge University Press, 2017.
doi:10.1017/9781316084267
3. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607, 1997.
doi:10.1088/0266-5611/13/6/013
4. Chew, W. C. and Y.-M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334
5. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 42-49, 2009.
doi:10.1109/TGRS.2009.2025122
6. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Transactions on Image Processing, Vol. 26, No. 9, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099
7. Sun, Y., Z. Xia, and U. S. Kamilov, "Efficient and accurate inversion of multiple scattering with deep learning," Optics Express, Vol. 26, No. 11, 14678-14688, 2018.
doi:10.1364/OE.26.014678
8. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, 1849-1860, 2018.
doi:10.1109/TGRS.2018.2869221
9. Li, L., L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, T. J. Cui, and , "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1818-1825, 2018.
10. Yao, H. M., E. Wei, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 2254-2258, 2019.
doi:10.1109/LAWP.2019.2925578
11. Sanghvi, Y., Y. Kalepu, and U. K. Khankhoje, "Embedding deep learning in inverse scattering problems," IEEE Transactions on Computational Imaging, Vol. 6, 46-56, 2019.
12. Anjit, T., R. Benny, P. Cherian, and P. Mythili, "Non-iterative microwave imaging solutions for inverse problems using deep learning," Progress In Electromagnetics Research M, Vol. 102, 53-63, 2021.
doi:10.2528/PIERM21021304
13. Yin, W., J. Ge, P. Meng, and F. Qu, "A neural network method for the inverse scattering problem of impenetrable cavities," Electronic Research Archive, Vol. 28, No. 2, 1123-1142, 2020.
doi:10.3934/era.2020062
14. Meng, P., X. Wang, and W. Yin, "A dynamical system view on recurrent neural networks," Electronic Research Archive, Vol. 30, No. 1, 257-271, 2022.
doi:10.3934/era.2022014
15. Chen, B., Y. Guo, F. Ma, and Y. Sun, "Numerical schemes to reconstruct three-dimensional time- dependent point sources of acoustic waves," Inverse Problems, Vol. 36, No. 7, 075009, 1-21, 2020.
16. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015.
17. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, No. 6, S117, 2005.
doi:10.1088/0266-5611/21/6/S09
18. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338
19. Peterson, M. R. and S. L. Ray, Computational Methods for Electromagnetics, Wiley-IEEE Press, 1998.
20. Wang, W. and S. Zhang, "Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 11, 1292-1296, 1992.
doi:10.1109/8.202706
21. Li, D., "The MNIST database of handwritten digit images for machine learning research," IEEE Signal Processing Magazine, Vol. 29, No. 6, 141-142, 2012.
doi:10.1109/MSP.2012.2211477
22. Magdum, A., M. Erramshetty, and R. P. K. Jagannath, "An exponential filtering based inversion method for microwave imaging," Radioengineering, Vol. 30, No. 3, 496-503, 2021.
doi:10.13164/re.2021.0496
23. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, Vol. 13, No. 4, 600-612, 2004.
doi:10.1109/TIP.2003.819861
24. Vargas, J. O., A. C. Batista, L. S. Batista, and R. Adriano, "On the computational complexity of the conjugate-gradient method for solving inverse scattering problems," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 17, 2323-2334, 2021.
doi:10.1080/09205071.2021.1946862
25. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 19, No. 18, 4050, 2019.
doi:10.3390/s19184050
26. Wei, Z., D. Liu, and X. Chen, "Dominant-current deep learning scheme for electrical impedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 66, No. 9, 2546-2555, 2019.
doi:10.1109/TBME.2019.2891676
27. Wei, Z. and X. Chen, "Physics-inspired convolutional neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6138-6148, 2019.
doi:10.1109/TAP.2019.2922779
28. Kandel, I. and M. Castelli, "The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset," ICT Express, Vol. 6, No. 4, 312-315, 2020.
doi:10.1016/j.icte.2020.04.010
29. Ye, X., Y. Bai, R. Song, K. Xu, and J. An, "An inhomogeneous background imaging method based on generative adversarial network," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 11, 4684-4693, 2020.
doi:10.1109/TMTT.2020.3015495
30. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the born and Rytov approximations: A nonlinear approach to electromagnetic scattering," Journal of Geophysical Research: Solid Earth, Vol. 98, No. B2, 1759-1775, 1993.
doi:10.1029/92JB02324
31. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, 2019.
32. Chew, W. C. and Q.-H. Liu, "Inversion of induction tool measurements using the distorted Born iterative method and CG-FFHT," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, 878-884, 1994.
doi:10.1109/36.298015
33. He, K. and J. Sun, "Convolutional neural networks at constrained time cost," IEEE Conference on Computer Vision and Pattern Recognition, 5353-5360, 2015.
34. Zhang, L., K. Xu, R. Song, X. Ye, G. Wang, and X. Chen, "Learning-based quantitative microwave imaging with a hybrid input scheme," Electronic Research Archive, Vol. 28, No. 24, 15007-15013, 2020.