Vol. 136
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-11
Asymmetric Flare Shape Patch MIMO Antenna for Millimeter Wave 5G Communication Systems
By
Progress In Electromagnetics Research C, Vol. 136, 75-86, 2023
Abstract
Today's 5G wireless communication evolution system demands millimeter wave frequency range antenna for its uses in several applications for future communication devices. A 2-port Asymmetric Flare-Shape Patch Multiple Input Multiple Output (MIMO) antenna for mm-wave communication system is designed and presented. The antenna structure is constructed on a Rogers RT Duroid 5880 dielectric substrate with 1.6 mm thickness, 2.2 dielectric constant, and 0.0009 loss tangent. The constructed MIMO structure has an overall size of 14×19.2 mm2. The proposed MIMO design has -10 dB return loss performance over a frequency range of 20-40 GHz with more than 20 dB isolation between antenna elements, which shows the low mutual coupling between antenna elements. The performance of the suggested MIMO antenna is reported in terms of return loss, gain, ECC, surface current, and radiation pattern. The simulated and measured MIMO antenna performance characteristics are in good agreement. The suggested design achieves more than 20 dB isolation and 8.17 dB gain with an ECC value lower than 0.0002, which meets the diversity performance of the MIMO design with two antenna elements. The proposed MIMO design is compact and the best choice for 5G mm-wave applications.
Citation
Jetendra Jakhar, Tejpal Jhajharia, and Bharat Gupta, "Asymmetric Flare Shape Patch MIMO Antenna for Millimeter Wave 5G Communication Systems," Progress In Electromagnetics Research C, Vol. 136, 75-86, 2023.
doi:10.2528/PIERC23033004
References

1. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "2 x 2 MIMO antenna for ISM band application," 11th International Conference on Industrial and Information System (ICIIS), 794-797, 2016.

2. Agarwal, A. and S. N. Mehta, "Design and performance analysis of MIMO-OFDM system using different antenna configurations," International Conference on Electrical, Electronics, and Optimization Technique, 1-5, 2016.

3. Madany, Y. M., R. A. Abdelrassoul, and N. Mohamed, "Miniaturized beam-switching array antenna with MIMO Direct Conversion Transceiver (MIMO-DCT) system for LTE and wireless communication applications," Progress In Electromagnetics Research C, Vol. 85, 9-23, 2018.
doi:10.2528/PIERC18051002

4. Agrawal, T. and S. Srivastava, "High gain microstrip MIMO antenna for wireless applications," International Journal of Microwave and Optical Technology, Vol. 12, 74-81, 2017.

5. Mohamed, Y. M., A. M. Dini, M. M. Soliman, and A. Z. M. Imran, "Design of 2 x 2 microstrip patch antenna array at 28 GHz for millimeter wave communication," 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), 445-450, Doha, Qatar, 2020.

6. Wang, F., Z. Duan, X. Wang, Q. Zhou, and Y. Gong, "High isolation millimeter-wave wideband MIMO antenna for 5G communication," International Journal on Antennas and Propagation, 1-18, 2019.

7. Lee, W. W., I. J. Hwang, and B. Jang, "End-fire Vivaldi antenna array with wide fan-beam for 5G mobile handsets," IEEE Access, Vol. 8, 118299-118304, 2020.
doi:10.1109/ACCESS.2020.3004867

8. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "Four element planar MIMO antenna design for long-term evolution operation," IETE Journal of Research, 1-7, 2017.

9. Patel, A., A. Vala, A. Desai, I. Elfergani, H. Mewada, K. Mahant, C. Zebiri, D. Chauhan, and J. Rodriguez, "Inverted-L shaped wideband MIMO antenna for millimeter-wave 5G applications," Electronics, Vol. 11, 1387, 2022.
doi:10.3390/electronics11091387

10. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "MIMO antennas with diversity and mutual coupling reduction techniques: A review," International Journal of Microwave and Wireless Technologies, Vol. 9, 1763-1780, 2017.
doi:10.1017/S1759078717000538

11. Nadeem, I. and D. Y. Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2019.
doi:10.1109/ACCESS.2018.2885558

12. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagation Magazine, Vol. 55, 220-232, 2013.

13. Sharawi, M. S., A. B. Numan, and D. N. Aloi, "Isolation improvement in a dual-band element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2012.
doi:10.2528/PIER12090610

14. Paliwal, H. P. and N. Agrawal, "Dumb-bell shaped defected ground structures MIMO antenna for UWB applications," 11th IEEE International Conference on Communication Systems and Network Technologies, 42-48, 2022.

15. Liu, H., W. Yang, A. Zhang, S. Zhu, Z. Wang, and T. Huang, "A miniaturized gain-enhanced antipodal Vivaldi antenna and its array for 5G communication applications," IEEE Access, Vol. 6, 76282-76288, 2018.
doi:10.1109/ACCESS.2018.2882914

16. Paliwal, H. P., "Design and analysis of E shaped microstrip patch antenna with defected ground structure for improvement of gain and bandwidth," International Conference on Optical & Wireless Technologies, MNIT Jaipur, 195-202, 2020.

17. Honma, N. and K. Murata, "Correlation in MIMO antennas," Electronics (MDPI), Vol. 9, 1-16, 2020.

18. Paliwal, H. P. and N. Agrawal, "Design of polarized 2 x 2 MIMO antenna using partially stepped ground," International Conference on Optical & Wireless Technologies, MNIT Jaipur, 181-188, 2020, ISBN 978-981-16-2818-4 (eBook).

19. Paliwal, H. P. and N. Agrawal, "A 2 x 1 dual-band MIMO antenna using complementary split ring resonator for wireless applications," TEST Engineering and Management, Vol. 82, 111212-111216, 2019.

20. Paliwal, H. P. and N. Agrawal, "Design of circularly polarized MIMO antenna using defective ground structure for wireless applications," IJIRCCE, Vol. 8, No. 6, 2159-2163, June 2020.

21. Tu, D. T. T., N. V. Hoc, P. D. Son, and V. V. Yem, "Design and implementation of dual-band MIMO antenna with low mutual coupling using electromagnetic band gap structures for portable equipment," International Journal of Engineering and Technology Innovation, Vol. 7, 48-60, 2017.

22. Niu, Y., Y. Li, D. Jin, L. Su, and A. V. Vasilakos, "A survey of millimeter wave (mmWave) communications for 5G: Opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 1-17, 2015.
doi:10.1007/s11276-015-0942-z