Vol. 132
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-05-02
Electromagnetic Band Gap Antenna with E-Shaped Defected Ground Structure for Communication Systems
By
Progress In Electromagnetics Research C, Vol. 132, 205-215, 2023
Abstract
A compact wideband miniaturized electromagnetic band gap (EBG) antenna has been proposed for communication systems with E-shaped defected ground structure (DGS). The proposed EBG antenna operates in the frequency range from 7.3 GHz to 9.4 GHz which includes the X band uplink frequency band (for sending modulated signals) from 7.9 to 8.4 GHz and the ITU-assigned downlink frequency band (for receiving signals) from 7.25 to 7.75 GHz. With EBG layer on the top layer, an E-shaped DGS structure has been introduced in the ground plane which results in the enhancement of measured impedance bandwidth from 300 MHz to 2100 MHz with good radiation characteristics.
Citation
Sahil Thakur, Louis W. Y. Liu, Himanshi, Rohit Jasrotia, Pawan Kumar, and Abhishek Kandwal, "Electromagnetic Band Gap Antenna with E-Shaped Defected Ground Structure for Communication Systems," Progress In Electromagnetics Research C, Vol. 132, 205-215, 2023.
doi:10.2528/PIERC23032702
References

1. Pirhadi, A., M. Hakak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetic Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

2. Shaban, H. F., H. A. Elmikatay, and A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetic Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901

3. Masri, T., M. K. A. Rahim, O. Ayop, F. Zubir, N. A. Samsuriand, and H. A. Majid, "Electromagnetic band gap structures incorporate with dual band microstrip antenna array," Progress In Electromagnetics Research M, Vol. 11, 111-122, 2010.
doi:10.2528/PIERM10011401

4. Burokur, S. N., A. Ourir, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, "Highly directive ISM band cavity antenna using a bi-layered metasurface reflector," Microw. Opt. Technol. Lett., Vol. 51, No. 6, 1393-1396, Jun. 2009.
doi:10.1002/mop.24391

5. Chen, P., X. D. Yang, C. Y. Chen, Y. N. Zhao, and , "A novel uni-planar compact EBG structure," Progress In Electromagnetics Research Letters, Vol. 45, 31-34, 2014.

6. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

7. Wong, K., Compact and Broadband Microstrip Antennas, Wiley, 2002.
doi:10.1002/0471221112

8. Kandwal, A., R. Sharma, and S. Kumar Khah, "Bandwidth enhancement using Z-shaped defected ground structure for a microstrip antenna," Microw. Opt. Technol. Lett., Vol. 55, 2251-2254, 2013.
doi:10.1002/mop.27836

9. Sharma, R., A. Kandwal, and S. K. Khah, "Wideband DGS circular ring microstrip antenna design using fuzzy approach with suppressed cross-polar radiations," Progress In Electromagnetics Research C, Vol. 42, 177-190, 2013.
doi:10.2528/PIERC13061504

10. Kandwal, A., R. Sharma, and S. K. Khah, "Dual band gap coupled antenna design with DGS for wireless communications," Advanced Electromagnetics, Vol. 2, No. 3, 51-58, 2014.
doi:10.7716/aem.v2i3.201

11. Ashwini, A., M. V. Kartikeyan, and A. Patnaik, "Efficiency enhancement of microstrip patch antenna with defected ground structure," Proceedings of International Conference on Microwave, Vol. 8, 729-731, 2008.

12. Guha, D., M. Biswas, and Y. M. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 455-458, 2005.
doi:10.1109/LAWP.2005.860211

13. Wong, K. L., C. L. Tang, and J. Y. Chiou, "Broad-band probe-fed patch antenna with a W-shaped ground plane," IEEE Trans. Antennas Propag., Vol. 50, No. 6, 827-831, Jun. 2002.
doi:10.1109/TAP.2002.1017663

14. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302

15. Arya, A. K., A. Patnaik, and M. V. Kartikeyan, "Gain enhancement of micro-strip patch antenna using dumbbell shaped defected ground structure," International Journal of Scientific Research Engineering & Technology (IJSRET), Vol. 2, No. 4, 184-188, Jul. 2013.

16. Tirado-Mendez, J. A., M. A. Peyrot-Solis, H. Jardon-Aguilar, E. A. Andrade-Gonzalez, and M. Reyes-Ayala, "Applications of novel defected microstrip structure (DMS) in planar passive circuits," Proceedings of the 10th WSEAS International Conference on CIRCUITS, 336-369, Vouliagmeni, Athens, Greece, Jul. 10-12, 2006.

17. Imran Hussain Shah, S., S. Bashir, and S. D. H. Shah, "Compact multiband microstrip patch antenna using Defected Ground Structure (DGS)," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2367-2370, 2014.
doi:10.1109/EuCAP.2014.6902292

18. Kandwal, A., T. Chakravarty, and S. K. Khah, "Circuital method for admittance calculation of gap-coupled sectoral antennas," Microw. Opt. Technol. Lett., Vol. 54, 210-213, 2012.
doi:10.1002/mop.26458

19. Wi, S.-H., Y.-S. Lee, and J.-G. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Trans. Antennas Propag., Vol. 55, 1196-1199, 2007.
doi:10.1109/TAP.2007.893427

20. Zainud-Deen, S., M. Badr, E. Hassan, K. Awadalla, and H. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203

21. Acharjee, J., K. Mandal, S. K. Mandal, and P. P. Sarkar, "Suppressing up to fourth harmonic of an ISM band microstrip patch antenna using compact defected ground structures," Microw. Opt. Technol. Lett., Vol. 59, No. 9, 2254-2259, 2017.
doi:10.1002/mop.30714

22. Fan, J., J. Lin, F. Qin, et al. "Ultrawideband harmonic suppression in microstrip patch antenna using novel defected ground structures," International Journal of Antennas and Propagation, 9602841, 2020.

23. Wang, L., J. Yu, T. Xie, and K. Bi, "A novel multiband fractal antenna for wireless application," International Journal of Antennas and Propagation, 9926753, 2021.

24. Kumar, L., A. Gautam, B. Kanaujia, et al. "Design of compact F-shaped slot triple band antenna for WLAN/WiMAX applications," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 1101-1105, 2016.
doi:10.1109/TAP.2015.2513099

25. Kunwar, A., A. K. Gautam, and B. K. Kanaujia, "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 191-196, 2017.
doi:10.1017/S1759078715001105

26. Liu, J., W.-Y. Yin, and S. He, "A new defected ground structure and its application for miniaturized switchable antenna," Progress In Electromagnetics Research, Vol. 107, 115-128, 2010.
doi:10.2528/PIER10050904

27. Kordzadeh, A. and F. Hojat-Kashani, "A new reduced size microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research B, Vol. 11, 29-37, 2008.

28. Huang, S. Y. and Y. H. Lee, "A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 3, 657-666, 2009.
doi:10.1109/TMTT.2009.2013313

29. Kunwar, A., A. K. Gautam, and B. K. Kanaujia, "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 191-196, 2017.
doi:10.1017/S1759078715001105

30. Kandasamy, A., et al., "Defected circular-cross stub copper metal printed pentaband antenna," Advances in Materials Science and Engineering, 6009092, 2022.

31. Kiani, S. H., X. C. Ren, M. R. Anjum, et al. "A novel shape compact antenna for ultrawideband applications," International Journal of Antennas and Propagation, 7004799, 2021.

32. Hari Prasad, B. S. and M. V. Prasad, "Design and analysis of compact periodic slot multiband antenna with defected ground structure for wireless applications," Progress In Electromagnetics Research M, Vol. 93, 77-87, 2020.
doi:10.2528/PIERM20032605

33. Li, R. and P. Gao, "Design of a UWB filtering antenna with defected ground structure," Progress In Electromagnetics Research Letters, Vol. 63, 65-70, 2016.
doi:10.2528/PIERL16081301

34. Sabaaw, A. M. A., K. S. Muttair, O. A. Al-Ani, and Q. H. Sultan, "Dual-band MIMO antenna with defected ground structure for sub-6 GHz 5G applications," Progress In Electromagnetics Research C, Vol. 122, 57-66, 2022.
doi:10.2528/PIERC22050703

35. Chavali, V. A. P. and A. A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2022.

36. Dash, R. K., P. B. Saha, and D. Ghoshal, "Slotted patch based multiband antenna with multiple DGS effect to suppress cross polarized radiation," Progress In Electromagnetics Research C, Vol. 120, 179-193, 2022.
doi:10.2528/PIERC22031707