Vol. 134
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-06-20
Planar Multi Notch Band Antenna in-Band Gain Enhanced by Epsilon-Near-Zero Non-Absorptive Metasurface
By
Progress In Electromagnetics Research C, Vol. 134, 1-10, 2023
Abstract
This paper presents the design, fabrication, and characterization of a novel single layer non- absorbing metasurface with a broadband epsilon near zero (ENZ) property and its application in-band gain enhancement of triple notch band ultra-wideband (UWB) antenna. The proposed metasurface is made up of non-resonant metamaterial unit cells consisting of half ring slots in a circular patch on an FR4 dielectric substrate. Metasurface with unit cells arranged in a 2×2 lattice pattern is suspended 4 mm above the triple notch band antenna. The transmission and reflection properties of the metamaterial unit cell are analysed and optimised to ensure the coherent transmission from the metasurface. The non-absorbing property of the metasurface results in the minimal loss of electromagnetic waves. The proposed antenna system with metasurface has a size of 28×28×7.2 mm3. The measured results of fabricated antenna are compared with the simulated ones and are in good match. The results show that the gain of the antenna was enhanced by 1.3 dB, 2.8 dB, and 4 dB at 5 GHz, 7 GHz, and 9 GHz, respectively.
Citation
Priyanka Usha, Niraj Kumar, and Krishnan Chitra, "Planar Multi Notch Band Antenna in-Band Gain Enhanced by Epsilon-Near-Zero Non-Absorptive Metasurface," Progress In Electromagnetics Research C, Vol. 134, 1-10, 2023.
doi:10.2528/PIERC23032604
References

1. Usha, P. and C. Krishnan, "Compact UWB planar antenna with triple band EMI reduction characteristics for WiMAX/WLAN/X-band satellite downlink frequency," Progress In Electromagnetics Research M, Vol. 61, 123-131, 2017.
doi:10.2528/PIERM17082301

2. Sarkar, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 396-399, 2014.
doi:10.1109/LAWP.2014.2306812

3. Wang, Z., G.-X. Zhang, Y. Yin, and J. Wu, "Design of a dual-band high-gain antenna array for WLAN and WiMAX base station," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1721-1724, 2014.
doi:10.1109/LAWP.2014.2352618

4. Lian, R., Z. Tang, and Y. Yin, "Design of a broadband polarization-reconfigurable Fabry-Perot resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 122-125, 2017.
doi:10.1109/LAWP.2017.2777502

5. Lalbakhsh, A. and K. P. Esselle, "Directivity improvement of a Fabry-Perot cavity antenna by enhancing near field characteristic," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), IEEE, 2016.

6. Hayat, T., M. U. Afzal, F. Ahmed, et al. "Low-cost ultrawideband high-gain compact resonant cavity antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1271-1275, 2020.
doi:10.1109/LAWP.2020.2997966

7. Adibi, S., M. Amin Honarvar, and A. Lalbakhsh, "Gain enhancement of wideband circularly polarized UWB antenna using FSS," Radio Science, Vol. 56, No. 1, 1-8, 2021.
doi:10.1029/2020RS007098

8. Zarbakhsh, S., M. Akbari, F. Samadi, and A.-R. Sebak, "Broadband and high-gain circularly-polarized antenna with low RCS," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 16-23, 2018.
doi:10.1109/TAP.2018.2876234

9. Catton, G. D., H. G. Espinosa, A. A. Dewani, and S. G. O'keefe, "Miniature convoluted FSS for gain enhancement of a multiband antenna," IEEE Access, Vol. 9, 36898-36907, 2021.
doi:10.1109/ACCESS.2021.3060398

10. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, et al. "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), IET, 2018.

11. Lalbakhsh, A., M. U. Afzal, T. Hayat, et al. "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Scientific Reports, Vol. 11, No. 1, 9421, 2021.
doi:10.1038/s41598-021-88547-3

12. Urul, B., "Gain enhancement of microstrip antenna with a novel DNG material," Microwave and Optical Technology Letters, Vol. 62, No. 4, 1824-1829, 2020.
doi:10.1002/mop.32240

13. Yuan, B., Y. H. Zheng, X. H. Zhang, B. You, and G. Q. Luo, "A bandwidth and gain enhancement for microstrip antenna based on metamaterial," Microwave and Optical Technology Letters, Vol. 59, No. 12, 3088-3093, 2017.
doi:10.1002/mop.30885

14. Kumar, S. and R. Kumari, "Bandwidth and gain-enhanced composite right/left-handed antenna for ultra-wideband applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 3, e22095, 2020.
doi:10.1002/mmce.22095

15. Sumathi, K., S. Lavadiya, P. Yin, J. Parmar, and S. K. Patel, "High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications," Wireless Networks, Vol. 27, 2131-2146, 2021.
doi:10.1007/s11276-021-02567-5

16. Lalbakhsh, A., R. B. V. B. Simorangkir, N. Bayat-Makou, et al. "Advancements and artificial intelligence approaches in antennas for environmental sensing," Artificial Intelligence and Data Science in Environmental Sensing, 19-38, 2022.
doi:10.1016/B978-0-323-90508-4.00004-6

17. Esfandiari, M., A. Lalbakhsh, P. N. Shehni, et al. "Recent and emerging applications of Graphene-based metamaterials in electromagnetics," Materials and Design, Vol. 221, 110920, 2022.
doi:10.1016/j.matdes.2022.110920

18. Dadgarpour, A., A. A. Kishk, and T. A. Denidni, "Gain enhancement of planar antenna enabled by array of split-ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3682-3687, 2016.
doi:10.1109/TAP.2016.2565741

19. Zhou, Z. and Y. Li, "Effective epsilon-near-zero (ENZ) antenna based on transverse cutoff mode," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2289-2297, 2019.
doi:10.1109/TAP.2019.2894335

20. Shaw, T., D. Bhattacharjee, and D. Mitra, "Gain enhancement of slot antenna using zero-index metamaterial superstrate," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 4, e21078, 2017.
doi:10.1002/mmce.21078

21. Xue, F., S. Liu, and X. Kong, "Single-layer high-gain planar lens antenna based on the focusing gradient metasurface," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, IEEE, 2019.

22. Usha, P. and C. Krishnan, "Epsilon near zero metasurface for ultrawide-band antenna gain enhancement and radar cross section reduction," AEU-International Journal of Electronics and Communications, Vol. 119, 153167, 2020.

23. Erfani, E., M. Niroo-Jazi, and S. Tatu, "A high-gain broadband gradient refractive index metasurface lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1968-1973, 2016.
doi:10.1109/TAP.2016.2526052

24. Zhou, L., X. Chen, X. Duan, and J. Li, "FPA using a three-layer PSS for gain enhancement," IET Microwaves, Antennas and Propagation, Vol. 12, No. 3, 400-405, 2017.
doi:10.1049/iet-map.2017.0522

25. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 3, e23033, 2022.
doi:10.1002/mmce.23033

26. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, 2018.
doi:10.1049/iet-com.2018.0170

27. Ghosh, A., V. Kumar, G. Sen, and S. Das, "Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor," IET Microwaves, Antennas and Propagation, Vol. 12, No. 8, 1400-1406, 2018.
doi:10.1049/iet-map.2017.0815

28. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2790-2800, 2022.
doi:10.1109/TAP.2021.3138256

29. Kumar, N., U. K. Kommuri, and P. Usha, "Mutual coupling reduction in multiband MIMO antenna using cross-slot fractal multiband EBG in the E-plane," Progress In Electromagnetics Research C, Vol. 132, 1-10, 2023.

30. Kumar, N. and K. Usha Kiran, "Meander-line electromagnetic bandgap structure for UWB MIMO antenna mutual coupling reduction in E-plane," AEU-International Journal of Electronics and Communications, Vol. 127, 153423, 2020.

31. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

32. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Advanced Materials, Vol. 24, No. 23, OP98-OP120, 2012.