1. Usha, P. and C. Krishnan, "Compact UWB planar antenna with triple band EMI reduction characteristics for WiMAX/WLAN/X-band satellite downlink frequency," Progress In Electromagnetics Research M, Vol. 61, 123-131, 2017.
doi:10.2528/PIERM17082301
2. Sarkar, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 396-399, 2014.
doi:10.1109/LAWP.2014.2306812
3. Wang, Z., G.-X. Zhang, Y. Yin, and J. Wu, "Design of a dual-band high-gain antenna array for WLAN and WiMAX base station," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1721-1724, 2014.
doi:10.1109/LAWP.2014.2352618
4. Lian, R., Z. Tang, and Y. Yin, "Design of a broadband polarization-reconfigurable Fabry-Perot resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 122-125, 2017.
doi:10.1109/LAWP.2017.2777502
5. Lalbakhsh, A. and K. P. Esselle, "Directivity improvement of a Fabry-Perot cavity antenna by enhancing near field characteristic," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), IEEE, 2016.
6. Hayat, T., M. U. Afzal, F. Ahmed, et al. "Low-cost ultrawideband high-gain compact resonant cavity antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1271-1275, 2020.
doi:10.1109/LAWP.2020.2997966
7. Adibi, S., M. Amin Honarvar, and A. Lalbakhsh, "Gain enhancement of wideband circularly polarized UWB antenna using FSS," Radio Science, Vol. 56, No. 1, 1-8, 2021.
doi:10.1029/2020RS007098
8. Zarbakhsh, S., M. Akbari, F. Samadi, and A.-R. Sebak, "Broadband and high-gain circularly-polarized antenna with low RCS," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 16-23, 2018.
doi:10.1109/TAP.2018.2876234
9. Catton, G. D., H. G. Espinosa, A. A. Dewani, and S. G. O'keefe, "Miniature convoluted FSS for gain enhancement of a multiband antenna," IEEE Access, Vol. 9, 36898-36907, 2021.
doi:10.1109/ACCESS.2021.3060398
10. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, et al. "A high-gain wideband EBG resonator antenna for 60 GHz unlicenced frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), IET, 2018.
11. Lalbakhsh, A., M. U. Afzal, T. Hayat, et al. "All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources," Scientific Reports, Vol. 11, No. 1, 9421, 2021.
doi:10.1038/s41598-021-88547-3
12. Urul, B., "Gain enhancement of microstrip antenna with a novel DNG material," Microwave and Optical Technology Letters, Vol. 62, No. 4, 1824-1829, 2020.
doi:10.1002/mop.32240
13. Yuan, B., Y. H. Zheng, X. H. Zhang, B. You, and G. Q. Luo, "A bandwidth and gain enhancement for microstrip antenna based on metamaterial," Microwave and Optical Technology Letters, Vol. 59, No. 12, 3088-3093, 2017.
doi:10.1002/mop.30885
14. Kumar, S. and R. Kumari, "Bandwidth and gain-enhanced composite right/left-handed antenna for ultra-wideband applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 3, e22095, 2020.
doi:10.1002/mmce.22095
15. Sumathi, K., S. Lavadiya, P. Yin, J. Parmar, and S. K. Patel, "High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications," Wireless Networks, Vol. 27, 2131-2146, 2021.
doi:10.1007/s11276-021-02567-5
16. Lalbakhsh, A., R. B. V. B. Simorangkir, N. Bayat-Makou, et al. "Advancements and artificial intelligence approaches in antennas for environmental sensing," Artificial Intelligence and Data Science in Environmental Sensing, 19-38, 2022.
doi:10.1016/B978-0-323-90508-4.00004-6
17. Esfandiari, M., A. Lalbakhsh, P. N. Shehni, et al. "Recent and emerging applications of Graphene-based metamaterials in electromagnetics," Materials and Design, Vol. 221, 110920, 2022.
doi:10.1016/j.matdes.2022.110920
18. Dadgarpour, A., A. A. Kishk, and T. A. Denidni, "Gain enhancement of planar antenna enabled by array of split-ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3682-3687, 2016.
doi:10.1109/TAP.2016.2565741
19. Zhou, Z. and Y. Li, "Effective epsilon-near-zero (ENZ) antenna based on transverse cutoff mode," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2289-2297, 2019.
doi:10.1109/TAP.2019.2894335
20. Shaw, T., D. Bhattacharjee, and D. Mitra, "Gain enhancement of slot antenna using zero-index metamaterial superstrate," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 4, e21078, 2017.
doi:10.1002/mmce.21078
21. Xue, F., S. Liu, and X. Kong, "Single-layer high-gain planar lens antenna based on the focusing gradient metasurface," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, IEEE, 2019.
22. Usha, P. and C. Krishnan, "Epsilon near zero metasurface for ultrawide-band antenna gain enhancement and radar cross section reduction," AEU-International Journal of Electronics and Communications, Vol. 119, 153167, 2020.
23. Erfani, E., M. Niroo-Jazi, and S. Tatu, "A high-gain broadband gradient refractive index metasurface lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1968-1973, 2016.
doi:10.1109/TAP.2016.2526052
24. Zhou, L., X. Chen, X. Duan, and J. Li, "FPA using a three-layer PSS for gain enhancement," IET Microwaves, Antennas and Propagation, Vol. 12, No. 3, 400-405, 2017.
doi:10.1049/iet-map.2017.0522
25. Das, P., K. Mandal, and A. Lalbakhsh, "Beam-steering of microstrip antenna using single-layer FSS based phase-shifting surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 3, e23033, 2022.
doi:10.1002/mmce.23033
26. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, 2018.
doi:10.1049/iet-com.2018.0170
27. Ghosh, A., V. Kumar, G. Sen, and S. Das, "Gain enhancement of triple-band patch antenna by using triple-band artificial magnetic conductor," IET Microwaves, Antennas and Propagation, Vol. 12, No. 8, 1400-1406, 2018.
doi:10.1049/iet-map.2017.0815
28. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2790-2800, 2022.
doi:10.1109/TAP.2021.3138256
29. Kumar, N., U. K. Kommuri, and P. Usha, "Mutual coupling reduction in multiband MIMO antenna using cross-slot fractal multiband EBG in the E-plane," Progress In Electromagnetics Research C, Vol. 132, 1-10, 2023.
30. Kumar, N. and K. Usha Kiran, "Meander-line electromagnetic bandgap structure for UWB MIMO antenna mutual coupling reduction in E-plane," AEU-International Journal of Electronics and Communications, Vol. 127, 153423, 2020.
31. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617
32. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Advanced Materials, Vol. 24, No. 23, OP98-OP120, 2012.