1. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley & Sons, 2000.
doi:10.1002/0471723770
2. Abadi, S. M. A. M. H., J. H. Booske, and N. Behdad, "Exploiting mechanical flexure as a means of tuning the responses of large-scale periodic structures," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 933-943, Mar. 2016.
doi:10.1109/TAP.2015.2513418
3. Ferreira, D., I. Cuinas, R. F. S. Caldeirinha, and T. R. Fernandes, "3-D mechanically tunable square slot FSS," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 242-250, Jan. 2017.
doi:10.1109/TAP.2016.2631131
4. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 781-784, Jun. 2013.
doi:10.1109/LAWP.2013.2270950
5. Silva, A. N., R. G. G. Carvalho, A. G. D. D'Assuncao, and J. P. Silva, "Simple and efficient design of reconfigurable FSS with triangular patch elements," International Applied Computational Electromagnetics Society Symposium --- Italy (ACES), May 2017.
6. Bai, H., M. Yan, W. Li, J. Wang, L. Zheng, H. Wang, and S. Qu, "Tunable frequency selective surface with angular stability," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 6, 1108-1112, Jun. 2021.
doi:10.1109/LAWP.2021.3073907
7. Guo, M., Y. Zheng, Q. Chen, L. Ding, D. Sang, F. Yuan, T. Guo, Y. Fu, and , "Analysis and design of a high-transmittance performance for varactor-tunable frequency-selective surface," IEEE Trans. Antennas Propag., Vol. 69, No. 8, 4623-4632, Aug. 2021.
doi:10.1109/TAP.2020.3045517
8. Tian, T., X. Huang, K. Cheng, Y. Liang, S. Hu, L. Yao, D. Guan, Y. Xu, and P. Liu, "Flexible and reconfigurable frequency selective surface with wide angular stability fabricated with additive manufacturing procedure," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 12, 2428-2432, Dec. 2020.
doi:10.1109/LAWP.2020.3034944
9. Abirami, S. B., E. F. Sundarsingh, and V. S. Ramalingam, "Mechanically reconfigurable frequency selective surface for RF shielding in indoor wireless environment," IEEE Trans. Electromag. Compatibility, Vol. 62, No. 6, 2643-2646, Dec. 2020.
doi:10.1109/TEMC.2020.2983899
10. Phon, R., S. Ghosh, and S. Lim, "Active frequency selective surface to switch between absorption and transmission band with additional frequency tuning capability," IEEE Trans. Antennas Propag., Vol. 67, No. 9, 6059-6067, Sept. 2019.
doi:10.1109/TAP.2019.2916752
11. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2004.
12. Liu, N., X. Sheng, C. Zhang, J. Fan, and D. Guo, "A design method for synthesizing wideband band-stop FSS via its equivalent circuit model," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2721-2725, Aug. 2017.
doi:10.1109/LAWP.2017.2743114
13. Chen, Q., S. Yang, J. Bai, and Y. Fu, "Design of absorptive/transmissive frequency-selective surface based on parallel resonance," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4897-4902, Sept. 2017.
doi:10.1109/TAP.2017.2722875
14. Huang, H. and Z. Shen, "Absorptive frequency-selective transmission structure with square-loop hybrid resonator," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3212-3215, Nov. 2017.
15. Computer Simulation Technology (CST), , , Version: 2019.
16. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," Int. J. RF Microw. Computer- Aided Engg., Vol. 31, No. 2, 1-12, Dec. 2020.
17. Parui, S. and A. Chatterjee, "A dual-layer frequency selective surface reflector for wideband applications," Radioengineering, Vol. 25, 67-72, Apr. 2016.
18. Kesavan, A., R. Karimian, and A. T. Denidni, "A novel wideband frequency selective surface for millimeter-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1711-1714, Jan. 2016.
doi:10.1109/LAWP.2016.2528221
19. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS based matematerial absorber using coupled line theory," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 511-514, Nov. 2014.
20. Zhang, L., M. Z. Chen, W. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Cheng, and T. J. Cui, "A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces," Nature Electro., Vol. 4, 218-227, Mar. 2021.
doi:10.1038/s41928-021-00554-4