Vol. 132
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-16
Reconfigurable Frequency Selective Surfaces for X Band Applications
By
Progress In Electromagnetics Research C, Vol. 132, 79-88, 2023
Abstract
The paper presents a new technique for designing a reconfigurable frequency selective surface (RFSS) by mechanical means. The combination of triangular loop element and three-legged element has been used to design the proposed single substrate two sided frequency selective surface (FSS) structure which offers variable transmission coefficient characteristics over the X-band frequencies under TE polarization for different angles of incidence. Thus, the band stop characteristics can be reconfigured by changing incident angle which describes the structure as `reconfigurable reflector'. The proposed FSS geometry is polarization insensitive under both TE and TM polarizations. The simulated results are further cross verified by conducting measurement of the fabricated structure. The equivalent circuit model (ECM) of the proposed FSS geometry has been provided, and the equivalent circuit parameters of the proposed FSS geometry have also been extracted using the curve fitting techniques. The proposed FSS structure can be used as a frequency reconfigurable reflector surface/reconfigurable intelligent surface (RIS) for advanced wireless communication.
Citation
Anett Antony, Sayantani Dutta, Bidisha Dasgupta, and Anamiya Bhattacharya, "Reconfigurable Frequency Selective Surfaces for X Band Applications," Progress In Electromagnetics Research C, Vol. 132, 79-88, 2023.
doi:10.2528/PIERC23030304
References

1. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley & Sons, 2000.
doi:10.1002/0471723770

2. Abadi, S. M. A. M. H., J. H. Booske, and N. Behdad, "Exploiting mechanical flexure as a means of tuning the responses of large-scale periodic structures," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 933-943, Mar. 2016.
doi:10.1109/TAP.2015.2513418

3. Ferreira, D., I. Cuinas, R. F. S. Caldeirinha, and T. R. Fernandes, "3-D mechanically tunable square slot FSS," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 242-250, Jan. 2017.
doi:10.1109/TAP.2016.2631131

4. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 781-784, Jun. 2013.
doi:10.1109/LAWP.2013.2270950

5. Silva, A. N., R. G. G. Carvalho, A. G. D. D'Assuncao, and J. P. Silva, "Simple and efficient design of reconfigurable FSS with triangular patch elements," International Applied Computational Electromagnetics Society Symposium --- Italy (ACES), May 2017.

6. Bai, H., M. Yan, W. Li, J. Wang, L. Zheng, H. Wang, and S. Qu, "Tunable frequency selective surface with angular stability," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 6, 1108-1112, Jun. 2021.
doi:10.1109/LAWP.2021.3073907

7. Guo, M., Y. Zheng, Q. Chen, L. Ding, D. Sang, F. Yuan, T. Guo, Y. Fu, and , "Analysis and design of a high-transmittance performance for varactor-tunable frequency-selective surface," IEEE Trans. Antennas Propag., Vol. 69, No. 8, 4623-4632, Aug. 2021.
doi:10.1109/TAP.2020.3045517

8. Tian, T., X. Huang, K. Cheng, Y. Liang, S. Hu, L. Yao, D. Guan, Y. Xu, and P. Liu, "Flexible and reconfigurable frequency selective surface with wide angular stability fabricated with additive manufacturing procedure," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 12, 2428-2432, Dec. 2020.
doi:10.1109/LAWP.2020.3034944

9. Abirami, S. B., E. F. Sundarsingh, and V. S. Ramalingam, "Mechanically reconfigurable frequency selective surface for RF shielding in indoor wireless environment," IEEE Trans. Electromag. Compatibility, Vol. 62, No. 6, 2643-2646, Dec. 2020.
doi:10.1109/TEMC.2020.2983899

10. Phon, R., S. Ghosh, and S. Lim, "Active frequency selective surface to switch between absorption and transmission band with additional frequency tuning capability," IEEE Trans. Antennas Propag., Vol. 67, No. 9, 6059-6067, Sept. 2019.
doi:10.1109/TAP.2019.2916752

11. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2004.

12. Liu, N., X. Sheng, C. Zhang, J. Fan, and D. Guo, "A design method for synthesizing wideband band-stop FSS via its equivalent circuit model," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2721-2725, Aug. 2017.
doi:10.1109/LAWP.2017.2743114

13. Chen, Q., S. Yang, J. Bai, and Y. Fu, "Design of absorptive/transmissive frequency-selective surface based on parallel resonance," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4897-4902, Sept. 2017.
doi:10.1109/TAP.2017.2722875

14. Huang, H. and Z. Shen, "Absorptive frequency-selective transmission structure with square-loop hybrid resonator," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3212-3215, Nov. 2017.

15. Computer Simulation Technology (CST), , , Version: 2019.

16. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," Int. J. RF Microw. Computer- Aided Engg., Vol. 31, No. 2, 1-12, Dec. 2020.

17. Parui, S. and A. Chatterjee, "A dual-layer frequency selective surface reflector for wideband applications," Radioengineering, Vol. 25, 67-72, Apr. 2016.

18. Kesavan, A., R. Karimian, and A. T. Denidni, "A novel wideband frequency selective surface for millimeter-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1711-1714, Jan. 2016.
doi:10.1109/LAWP.2016.2528221

19. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS based matematerial absorber using coupled line theory," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 511-514, Nov. 2014.

20. Zhang, L., M. Z. Chen, W. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Cheng, and T. J. Cui, "A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces," Nature Electro., Vol. 4, 218-227, Mar. 2021.
doi:10.1038/s41928-021-00554-4