Vol. 133
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-05-30
A Compact Dual-Band Octal Patch Loaded with Bow-Tie Parasitic MIMO Antenna Design for 5G mm -Wave Wireless Communication
By
Progress In Electromagnetics Research C, Vol. 133, 121-134, 2023
Abstract
In the present era of wireless communication networks, the key area of concern is always the need for faster data rates to meet the growing requirements. The 5G standards have the fortitude to bring about rapid data transfer speeds, instantaneous connectivity, large data capacities, and minimal latency. In this paper, a novel octal patch integrated with a bow-tie parasitic antenna element with full ground plane that incorporates a microstrip dual band antenna was proposed for 5G n257/n261/n259 and n260 band applications. This bow-tie parasitic antenna element integrated octal patch single and MIMO antenna structure was mounted on an RT Duriod 5880 (εr = 2.2, loss tangent = 0.0009) with dimensions of 7.5 x 9.9 x 0.9 mm3 and 7.5 x 19.8 x 0.9 mm3 (0.67λ x 1.75λ x 0.07λ, where λ is considered at the lowest operating tuned frequency). A decoupling element was precisely placed in the core of a two-element MIMO antenna to reduce the mutual coupling. This embedded antenna radiating structure resonated in dual bands ranging 26.69-29.55 GHz and 38.24-42.53 GHz with a center frequency of 28 GHz and 40.2 GHz, respectively. This achieves a bandwidth of 2.85 GHz (10.3%) and 4.29 GHz (10.75%) at the dual bands. The maximum gains were 7.9 dBi and 6.97 dBi, and greater than 92% efficiency was obtained over the dual-band. From the results extracted from the proposed antenna, it was found that the antenna is capable of covering the 5G NR n257/n261/n259 and n260 bands with significant bandwidth, gain, isolation, ECC, DG, TARC, Multiplexing Efficiency, CCL MEG, and radiation efficiency. Thus, the antenna can be considered a potential contender for 5G millimeter wave wireless communication systems.
Citation
Idrish Shaik, and Sahukara Krishna Veni, "A Compact Dual-Band Octal Patch Loaded with Bow-Tie Parasitic MIMO Antenna Design for 5G mm -Wave Wireless Communication," Progress In Electromagnetics Research C, Vol. 133, 121-134, 2023.
doi:10.2528/PIERC23030302
References

1. Andrews, J. G., S. Buzzi, W. Choi, et al. "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, 2014.
doi:10.1109/JSAC.2014.2328098

2. Rappaport, T. S., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

3. Attaran, M., "The impact of 5G on the evolution of intelligent automation and industry digitization," J. Ambient Intel. Human Computer, 2021.

4. Cao, Y., K. S. Chin, W. Che, W. Yang, and E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017.
doi:10.1109/LAWP.2017.2757045

5. Al-Gburi, A. J. A., Z. Zakaria, H. Alsariera, M. F. Akbar, I. M. Ibrahim, K. S. Ahmad, S. Ahmad, and S. S. Al-Bawri, "Broadband circular polarised printed antennas for indoor wireless communication systems: A comprehensive review," Micromachines, 2022.

6. Ikram, M., E. A. Abbas, N. Nguyen-Trong, K. H. Sayidmarie, and A. Abbosh, "Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7225-7233, Dec. 2019.
doi:10.1109/TAP.2019.2930119

7. Shafi, M., A. F. Molisch, P. J. Smith, et al. "5G: A tutorial overview of standards, trials, challenges, deployment, and practice," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 6, 1201-1221, Jun. 2017.
doi:10.1109/JSAC.2017.2692307

8. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, 1997.

9. Shayea, I., T. A. Rahman, M. H. Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia," IEEE Access, Vol. 6, 19044-19064, 2018.
doi:10.1109/ACCESS.2018.2810855

10. Sethi, W. T., M. A. Ashraf, A. Ragheb, A. Alasaad, and S. A. Alshebeili, "Demonstration of millimeter wave 5G setup employing high-gain Vivaldi array," International Journal of Antennas and Propagation, 1-12, 2018.
doi:10.1155/2018/3927153

11. Jilani, S. F. and A. Alomainy, "A multiband millimeter-wave 2-D array based on enhanced Franklin antenna for 5G wireless systems," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2983-2986, 2017.
doi:10.1109/LAWP.2017.2756560

12. Jeong, M. J., N. Hussain, J. W. Park, S. G. Park, S. Y. Rhee, and N. Kim, "Millimeter-wave microstrip patch antenna using vertifically coupled split ring metaplate for gain enhancement," Microwave and Optical Technology Letters, Vol. 61, No. 10, 2360-2365, 2019.
doi:10.1002/mop.31908

13. Ali, M. M. M. and A.-R. Sebak, "Dual band (28/38 GHz) CPW slot directive antenna for future 5G cellular applications," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 2016.

14. Przesmycki, R., M. Bugaj, and L. Nowosielski, "Broadband microstrip antenna for 5G wireless systems operating at 28 GHz," Electronics, Vol. 10, No. 1, 1, 2020.
doi:10.3390/electronics10010001

15. Hussain, M., S. M. R. Jarchavi, S. I. Naqvi, U. Gulzar, S. Khan, M. Alibakhshikenari, and I. Huynen, "Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka-, and V-band spectrums," Electronics, Vol. 10, No. 21, 2674, 2021.
doi:10.3390/electronics10212674

16. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303

17. Farahat, A. E. and K. F. A. Hussein, "28/38 GHz dual-band Yagi-Uda antenna with corrugated radiator and enhanced reflectors for 5G MIMO antenna systems," Progress In Electromagnetics Research C, Vol. 101, 159-172, 2020.
doi:10.2528/PIERC20022603

18. El Hadri, D., A. Zakriti, A. Zugari, M. El Ouahabi, and J. El Aoufi, "High isolation and ideal correlation using spatial diversity in a compact MIMO antenna for fifth-generation applications," International Journal of Antennas and Propagation, 1-10, 2020.
doi:10.1155/2020/2740920

19. Zahid, M. N., Z. Gaofeng, S. H. Kiani, et al. "H-shaped eight-element dual-band MIMO antenna for sub-6 GHz 5G smartphone applications," IEEE Access, Vol. 10, 85619-85629, 2022.
doi:10.1109/ACCESS.2022.3189658

20. Yon, H., N. H. A. Rahman, M. A. Aris, M. H. Jamaluddin, I. K. C. Lin, H. Jumaat, F. N. M. Redzwan, and Y. Yamada, "Development of C-shaped parasitic MIMO antennas for mutual coupling reduction," Electronics, Vol. 10, No. 19, 2431, 2021.
doi:10.3390/electronics10192431

21. Alanazi, M. D. and S. K. Khamas, "A compact dual band MIMO dielectric resonator antenna with improved performance for mm-Wave applications," Sensors, Vol. 22, No. 13, 5056, 2022.
doi:10.3390/s22135056

22. Awan, W. A., M. Soruri, M. Alibakhshikenari, and E. Limiti, "On-demand frequency switchable antenna array operating at 24.8 and 28 GHz for 5G high-gain sensors applications," Progress In Electromagnetics Research M, Vol. 108, 163-173, 2022.
doi:10.2528/PIERM21121102

23. Farahat, A. E. and K. F. A. Hussein, "Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications," IEEE Access, Vol. 10, 32213-32223, 2022.
doi:10.1109/ACCESS.2022.3160724

24. Hasan, M. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019.
doi:10.1080/09205071.2019.1617790

25. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsyst. Technol., Vol. 27, No. 1, 283-292, 2021.
doi:10.1007/s00542-020-04951-1

26. Venkateswara Rao, M., B. T. P. Madhav, J. Krishna, Y. Usha Devi, T. Anilkumar, and B. Prudhvi Nadh, "CSRR-loaded T-shaped MIMO antenna for 5G cellular networks and vehicular communications," International Journal of RF and Microwave Computer-Aided Engineering, e21799, 2019.

27. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303

28. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behavior for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401

29. Bilal, M., S. I. Naqvi, N. Hussain, Y. Amin, and N. Kim, "High-isolation MIMO antenna for 5G millimeter-wave communication systems," Electronics, Vol. 11, No. 6, 962, 2022.
doi:10.3390/electronics11060962

30. El Hadri, D., A. Zugari, and A. Zakriti, "Extra wide band MIMO antenna with high isolation and low correlation at 38 GHz mm-Wave frequency band for 5G applications," E3S Web Conference, 35101076, 2022.

31. Hussain, M., W. A. Awan, E. M. Ali, M. S. Alzaidi, M. Alsharef, D. H. Elkamchouchi, A. Alzahrani, and M. F. Abo Sree, "Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-Wave applications," Micromachines, Vol. 13, 1918, 2022.
doi:10.3390/mi13111918

32. Sehrai, D. A., M. Asif, J. Khan, M. Abdullah, W. A. Shah, S. Alotaibi, and N. Ullah, "A high-gain and wideband MIMO antenna for 5G mm-Wave-based IoT communication networks," Appl. Sci., Vol. 12, 9530, 2022.
doi:10.3390/app12199530

33. Hussain, N., W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications," AEU --- International Journal of Electronics and Communications, Vol. 132, 153612, 2021.
doi:10.1016/j.aeue.2021.153612

34. Khalid, M., S. I. Naqvi, N. Hussain, M. U. Rahman, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071

35. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 7, 705, 2003.
doi:10.1049/el:20030495

36. Sharawi, M., Printed MIMO Antenna Engineering, Artech House, 2014, ISBN 9781608076819.