1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
2. Parimi, P. V., W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by at lens using negative refraction," Nature, Vol. 426, No. 6965, 404-404, 2003.
doi:10.1038/426404a
3. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28
4. Atre, A. C., A. Garcia-Etxarri, H. Alaeian, and J. A. Dionne, "A broadband negative index metamaterial at optical frequencies," Advanced Optical Materials, Vol. 1, No. 4, 327-333, 2013.
doi:10.1002/adom.201200022
5. Bang, S., S. So, and J. Rho, "Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials," Scientific Reports, Vol. 9, No. 1, 14093, 2019.
doi:10.1038/s41598-019-50434-3
6. Garcia-Meca, C., J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Physical Review Letters, Vol. 106, No. 6, 067402, 2011.
doi:10.1103/PhysRevLett.106.067402
7. Ling, F., Z. Zhong, R. Huang, and B. Zhang, "A broadband tunable terahertz negative refractive index metamaterial," Scientific Reports, Vol. 8, No. 1, 9843, 2018.
doi:10.1038/s41598-018-28221-3
8. Ling, F., Z. Zhong, Y. Zhang, R. Huang, and B. Zhang, "Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level," Optics Express, Vol. 26, No. 23, 30085-30099, 2018.
doi:10.1364/OE.26.030085
9. Nguyen, H. T., T. S. Bui, S. Yan, G. A. E. Vandenbosch, P. Lievens, L. D. Vu, and E. Janssens, "Broadband negative refractive index obtained by plasmonic hybridization in metamaterials," Applied Physics Letters, Vol. 109, No. 22, 221902, 2016.
doi:10.1063/1.4968802
10. Rasad, A., H. T. Yudistira, F. Qalbina, A. G. Saputro, and A. Faisal, "Multilayer flexible metamaterials based on circular shape with negative refractive index at microwave spectrum," Sensors and Actuators A: Physical, Vol. 332, 113208, 2021.
doi:10.1016/j.sna.2021.113208
11. Zhu, C., C.-H. Liang, and L. Li, "Broadband negative index metamaterials with low-loss," AEU --- International Journal of Electronics and Communications, Vol. 65, No. 9, 724-727, 2011.
doi:10.1016/j.aeue.2010.10.004
12. Aydin, K., Z. Li, L. Sahin, and E. Ozbay, "Negative phase advance in polarization independent, multi-layer negative-index metamaterials," Optics Express, Vol. 16, No. 12, 8835-8844, 2008.
doi:10.1364/OE.16.008835
13. Cho, H., Y. Yang, D. Lee, S. So, and J. Rho, "Experimental demonstration of broadband negative refraction at visible frequencies by critical layer thickness analysis in a vertical hyperbolic metamaterial," Nanophotonics, Vol. 10, No. 15, 3871-3877, 2021.
doi:10.1515/nanoph-2021-0337
14. Li, W., Q. Meng, R. Huang, Z. Zhong, and B. Zhang, "Thermally tunable broadband terahertz metamaterials with negative refractive index," Optics Communications, Vol. 412, 85-89, 2018.
doi:10.1016/j.optcom.2017.11.076
15. Cooper, K. B., R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, "THz imaging radar for standoff personnel screening," IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, 169-182, 2011.
doi:10.1109/TTHZ.2011.2159556
16. Ferguson, B. and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials, Vol. 1, No. 1, 26-33, 2002.
doi:10.1038/nmat708
17. Muthuramalingam, K. and W.-C. Wang, "Non-destructive evaluation of the medical device packages using the terahertz time-domain spectroscopy," SPIE Smart Structures + Nondestructive Evaluation, Vol. 12048, SPIE, 2022.
18. Cheng, Y. T., Y. H. Chiang, C. Y. Kao, H. H. Chen, and W. C. Wang, "THz gas detection using cellulose nanoporous foam," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2018.
19. Davies, A. G., A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, "Terahertz spectroscopy of explosives and drugs," Materials Today, Vol. 11, No. 3, 18-26, 2008.
doi:10.1016/S1369-7021(08)70016-6
20. Wang, W.-C. and P. Garu, "Design of an ultra-wideband omnidirectional and polarization insensitive ower petal antenna for potential ambient electromagnetic energy harvesting applications," Scientific Reports, Vol. 12, No. 1, 6096, 2022.
doi:10.1038/s41598-022-09991-3
21. Lin, H.-R. and W.-C. Wang, "Midinfrared radiation energy harvesting device," Journal of Photonics for Energy, Vol. 3, 038001, 2017.
doi:10.1117/1.JPE.7.038001
22. Du, Q.-J., J.-S. Liu, K.-J. Wang, X.-N. Yi, and H.-W. Yang, "Dual-band Terahertz left-handed metamaterial with fishnet structure," Chinese Physics Letters, Vol. 28, No. 1, 014201, 2011.
doi:10.1088/0256-307X/28/1/014201
23. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104
24. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608
25. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [Education Column]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, 2013.
doi:10.1109/MAP.2013.6735515
26. Hsieh, F.-J. and W.-C. Wang, "Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models," Journal of Applied Physics, Vol. 112, No. 6, 064907, 2012.
doi:10.1063/1.4752753
27. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520
28. Chang, C.-L., W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, "Tunable terahertz fishnet metamaterial," Applied Physics Letters, Vol. 102, No. 15, 151903, 2013.
doi:10.1063/1.4801648
29. Liu, T., S. Ma, B. Yang, S. Xiao, and L. Zhou, "Effective-medium theory for multilayer metamaterials: Role of near-field corrections," Physical Review B, Vol. 102, No. 17, 174208, 2020.
doi:10.1103/PhysRevB.102.174208
30. Jeong, D.-Y., Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, "Electro-optical response of the ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer," Journal of Applied Physics, Vol. 96, No. 1, 316-319, 2004.
doi:10.1063/1.1757032
31. Mishu, S. J., R. A. K. Moushi, N. Dhar, and M. A. Rahman, "Design of a dual-band terahertz planar double-negative metamaterial with near zero refractive index property," 2021 International Conference on Science & Contemporary Technologies (ICSCT), 2021.
32. Zhang, S., Z. Wei, L. Xu, J. Xu, S. Ouyang, and Y. Shen, "Plasmonic fishnet structures for dual band THz left-handed metamaterials," Photonics, Vol. 8, No. 4, 116, 2021.
doi:10.3390/photonics8040116
33. Wegrowski, A., W.-C. Wang, and C. Tsui, "Three cases of discontinuous refractive index in metamaterial study," Scientific Reports, Vol. 12, No. 1, 3558, 2022.
doi:10.1038/s41598-022-07537-1