1. Liolis, K., A. Geurtz, R. Sperber, et al. "Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: The SaT5G approach," Int. J. Satell. Commun. Netw., Vol. 37, No. 2, 91-112, 2019.
doi:10.1002/sat.1245
2. Arifin, J., "Study of CUBESAT systems for IoT," Proc. 12th Int. Renew. Eng. Conf. (IREC), 1-3, Apr. 2021.
3. Bassoli, R., F. Granelli, C. Sacchi, S. Bonafini, and F. H. Fitzek, "CubeSat based 5G cloud radion access networks: A novel paradigm for on-demand anytime/anywhere connectivity," IEEE Veh. Technol. Mag., Vol. 15, No. 2, 39-47, 2020.
doi:10.1109/MVT.2020.2979056
4. Centenaro, M., C. E. Costa, F. Granelli, C. Sacchi, and L. Vangelista, "A survey on technologies, standards and open challenges in satellite IoT," IEEE Commun. Surveys Tuts., Vol. 23, No. 3, 1693-1720, 3rd Quart., 2021.
doi:10.1109/COMST.2021.3078433
5. Padhi, P. K. and F. Charrua-Santos, "6G enabled industrial Internet of Everything: Towards a theoretical framework," Appl. Syst. Innov., Vol. 4, No. 1, 11, Feb. 2021.
doi:10.3390/asi4010011
6. Ramahatla, K., M. Mosalaosi, A. Yahya, and B. Basutli, "Multiband reconfigurable antennas for 5G wireless and CubeSat applications: A review," IEEE Access, Vol. 10, 40910-40931, 2022.
doi:10.1109/ACCESS.2022.3166223
7. Hu, P. F., K. W. Leung, Y. M. Pan, and S. Y. Zheng, "Electrically small, planar, horizontally polarized dual-band omnidirectional antenna and its application in a MIMO system," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 5345-5355, 2021, doi: 10.1109/TAP.2021.3061096.
doi:10.1109/TAP.2021.3061096
8. Barman, B., D. Chatterjee, and A. N. Caruso, "Performance optimization of electrically small microstrip patch antennas on finite ground planes," 2020 IEEE Intern. Symp. on Ant. and Propag. and North American Radio Science Meeting, 1-2, 2020.
9. Chen, X., M.-C. Tang, D. Yi, and R. W. Ziolkowski, "An interdigitated structure-based, electrically small dipole antenna with enhanced bandwidth," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 355-356, 2020.
doi:10.1109/IEEECONF35879.2020.9329584
10. Shameena, V. A., M. Manoj, M. Remsha, P. V. Anila, M. Sreejith Nair, and P. Mohanan, "Wideband electrically small monopole antenna," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-3, 2020.
11. Barman, B., K. C. Durbhakula, B. Bissen, D. Chatterjee, and A. N. Caruso, "Performance optimization of a microstrip patch antenna using characteristic mode and D/Q analysis," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-4, 2020.
12. Yu, Y.-H., Z.-Y. Zong, W. Wu, and D.-G. Fang, "Dielectric slab superstrate electrically small antennas with high gain and wide band," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 9, 1476-1480, Sept. 2020.
doi:10.1109/LAWP.2020.3005721
13. Shubbar, M. and B. Rakos, "A self-adapting, pixelized planar antenna design for infrared frequencies," Sensors, Vol. 22, 3680, 2022, https://doi.org/10.3390/s22103680.
doi:10.3390/s22103680
14. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Inc., 2001.
15. Ramesh, M. and K. B. Yip, "Design formula for inset fed microstrip patch antenna," Journal of Micro. and Opt., Vol. 3, No. 3, 5-10, Dec. 2003.
16. Saturday, J. C., K. M. Udofi, and A. B. Obot, "Compact rectangular slot patch antenna for dual frequency operation using inset feed technique," Intern. Journal of Information and Communication Sciences, Vol. 1, No. 3, 47-53, Jan. 2017.
17. "ANSYS electronics desktop package,", ANSYS v18, Ansoft Corporation.
18. Madany, Y. M., H. M. Elkamchouchi, and S. I. Abd-Elmonieum, "Frequency-tunable electrically small diversity patch antennas for cognitive radio applications," 2021 Inter. Telecommunications Conf. (ITC-Egypt), 1-6, 2021.
19. Khan, M. U., M. S. Sharawi, and R. Mittra, "Microstrip patch antenna miniaturization techniques: A review," IET Microwaves, Antennas & Propagation, Vol. 9, 913-922, 2015.
doi:10.1049/iet-map.2014.0602
20. El Hachimi, Y., Y. Gmih, E. Makroum, and A. Farchi, "A miniaturized patch antenna designed and manufactured using slot's technique for RFID UHF mobile applications," International Journal of Electrical and Computer Engineering (IJECE), Vol. 8, No. 6, 5134-5143, Dec. 2018.
doi:10.11591/ijece.v8i6.pp5134-5143
21. Nagabhushana, H. M., C. R. Byrareddy, N. Thangadurai, and S. U. Sharief, "Slotted and miniaturized patch antenna for WLAN and WiMAX applications," International Journal of Advanced Information Science and Technology (IJAIST), Vol. 6, No. 4, Apr. 2017.
22. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.
23. Borazjani, O., M. Nosrati, and M. Daneshmand, "A novel triple notch-bands ultra wide-band band-pass filters using parallel multi-mode resonators and CSRRs," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 24, No. 3, 375-381, 2014.
doi:10.1002/mmce.20770
24. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2012.
25. Hayati, M. and M. Nosrati, "Loaded coupled transmission line approach of left-handed (LH) structures and realization of a highly compact dual-band branch-line coupler," Progress In Electromagnetics Research C, Vol. 10, 75-86, 2009.
doi:10.2528/PIERC09041508
26. Rezaei, A. and L. Noori, "Microstrip hybrid coupler with a wide stop-band using symmetric structure for wireless applications," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 17, No. 1, Mar. 2018.
doi:10.1590/2179-10742018v17i11121
27. Sarkar, S., A. D. Majumdar, S. Mondal, S. Biswas, D. Sarkar, and P. P. Sarkar, "Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane," Microwave Opt. Technol. Lett., Vol. 53, No. 1, 111-115, 2011.
doi:10.1002/mop.25661
28. Sarkar, M. and S. K. Chowdhury, "A new compact microstrip patch antenna," Microwave Opt. Technol. Lett., Vol. 47, No. 4, 379-381, 2005.
doi:10.1002/mop.21174
29. Prabhakar, H. V., U. K. Kummuri, R. M. Yadahalli, and V. Munnappa, "Effect of various meandering slots in rectangular microstrip antenna ground plane for compact broadband operation," Electron. Lett., Vol. 43, No. 16, 16-17, 2007.
doi:10.1049/el:20070688
30. Lin, S.-Y. and K.-C. Huang, "A compact microstrip antenna for GPS and SCS application," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1227-1229, 2005.
doi:10.1109/TAP.2004.842597
31. Kuo, J.-S. and K.-L. Wong, "A compact microstrip antenna with meandering slots in the ground plane," Microwave Opt. Technol. Lett., Vol. 29, No. 2, 95-97, 2001.
doi:10.1002/mop.1095
32. Er-Rebyiy, R., J. Zbitou, A. Tajmouati, M. Latrach, A. Errkik, and L. El Abdellaoui, "A new design of a miniature microstrip patch antenna using defected ground structure DGS," 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 1-4, 2017.
33. Pandhare, R. A., P. L. Zade, and M. P. Abegaonkar, "Miniaturized microstrip antenna array using defected ground structure with enhanced performance," Engineering Science and Technology, An International Journal, Vol. 19, No. 3, 1360-1367, 2016.
doi:10.1016/j.jestch.2016.03.007
34. Bhakhar, P., V. Dwivedi, and P. Prajapati, "Directivity enhancement of miniaturized directional coupler using defected ground structure," Proceedings of the International Conference on Communication and Signal Processing 2016 (ICCASP 2016), Advances in Intelligent Systems Research, Dec. 2016.
35. Bhakhar, P. and V. Dwivedi, "Symmetrical impedance microstrip coupled line coupler using fractal DGS for lower C-band applications," International Journal of Microwave and Optical Technology, Vol. 13, No. 2, 159-166, 2018.
36. Sanega, A. and P. Kumar, "A compact microstrip patch antenna for mobile communication applications," Micro-Electronics and Telecommunication Engineering, D. K. Sharma, V. E. Balas, L. H. Son, R. Sharma, K. Cengiz, Lecture Notes in Networks and Systems, Vol. 106, Springer, Singapore, 2020.
37. Roshani, S., S. I. Yahya, S. Roshani, and M. Rostami, "Design and fabrication of a compact branch-line coupler using resonators with wide harmonics suppression band," Electronics, MDPI, Vol. 11, 793, 2022.
doi:10.3390/electronics11050793
38. Rani, R., P. Kaur, and N. Verma, "Metamaterials and their applications in patch antenna: A review," International Journal of Hybrid Information Technology, Vol. 8, No. 11, 199-212, 2015.
doi:10.14257/ijhit.2015.8.11.17
39. Nelaturi, S. and N. P. Venkata, "A compact microstrip patch antenna based on metamaterials for Wi-Fi and WiMAX applications," Journal of Electromagnetic Engineering and Science, Vol. 18, No. 3, 182-187, Jul. 2018.
doi:10.26866/jees.2018.18.3.182
40. Varamini, G., A. Keshtkar, and M. N. Moghadasi, "Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification," AEU Inter. Jour. of Electronics and Communications, Vol. 83, 213-221, 2018.
doi:10.1016/j.aeue.2017.08.057
41. Li, R., G. Dejean, M. M. Tentzeris, and J. Laskar, "Development and analysis of a folded shorted-patch antenna with reduced size," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 555-562, 2004.
doi:10.1109/TAP.2004.823884
42. Chiu, C. Y., C. H. Chan, and K. M. Luk, "Study of a small wide-band patch antenna with double shorting walls," IEEE Antennas Wireless Propag. Lett., Vol. 3, No. 1, 230-231, 2004.
doi:10.1109/LAWP.2004.836579
43. Holub, A. and M. Polivka, "A novel microstrip patch antenna miniaturization technique: A meanderly folded shorted-patch antenna," 14th Conf. on Microwave Techniques, 1-4, Apr. 2008.
44. Luk, K., R. Chair, and K. Lee, "Small rectangular patch antenna," Electron. Lett., Vol. 34, No. 25, 2366, 1998.
doi:10.1049/el:19981643
45. Moon, S.-M., H.-K. Ryu, J.-M. Woo, and H. Ling, "Miniaturization of λ/4 microstrip antenna using perturbation effect and plate loading for low-VHF-band applications," Electron. Lett., Vol. 47, No. 3, 162, 2011.
doi:10.1049/el.2010.3647
46. Porath, R., "Theory of miniaturized shorting-post microstrip antennas," IEEE Trans. Antennas Propag., Vol. 48, No. 1, 41-47, 2000.
doi:10.1109/8.827384
47. Mishra, A., P. Singh, N. P. Yadav, J. Ansari, and B. Vishvakarma, "Compact shorted microstrip patch antenna for dual-band operation," Progress In Electromagnetics Research C, Vol. 9, 171-182, 2009.
doi:10.2528/PIERC09071007
48. Wang, S., H. W. Lai, K. K. So, and K. B. Ng, "Wideband shorted patch antenna with a modified half U-slot," IEEE Antennas Wireless Propag. Lett., Vol. 11, 689-692, 2012.
doi:10.1109/LAWP.2012.2204716
49. Waterhouse, R., S. Targonski, and D. Kokotoff, "Design and performance of small printed antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1629-1633, 1998.
doi:10.1109/8.736612
50. Souza, E. A. M., P. S. Oliveira, A. G. D'Assunção, L. M. Mendonça, and C. Peixeiro, "Miniaturization of a microstrip patch antenna with a koch fractal contour using a social spider algorithm to optimize shorting post position and inset feeding," Hindawi Publishing Corporation, International Journal of Antennas and Propagation, Vol. Article ID 6284830, 10 pages, 2019, 2019.
51. Rathod, S. M., R. N. Awale, and K. P. Ray, "Shorted circular microstrip antennas for 50 Ω microstrip line feed with very low cross polarization," Progress In Electromagnetics Research Letters, Vol. 74, 91-98, 2018.
doi:10.2528/PIERL18010935
52. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1783-1786, 2016.
doi:10.1109/LAWP.2016.2536678
53. Menga, F. and S. Sharma, "Single feed dual-band (2.4 GHz/5 GHz) miniaturized patch antenna for wireless local area network (WLAN) communications," Journal of Electromagnetic Waves and Applications, 2016.
54. Boukarkar, A., X. Q. Lin, Y. Jiang, and Y. Q. Yu, "Miniaturized single-feed multiband patch antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 850-854, Feb. 2017.
doi:10.1109/TAP.2016.2632620
55. Ramzan, M. and K. Topalli, "A miniaturized patch antenna by using a CSRR loading plane," Hindawi Publishing Corporation, International Journal of Antennas and Propagation, Vol. 2015, Article ID 495629, 9 pages, 2015.
56. Painam, S. and C. Bhuma, "Miniaturizing a microstrip antenna using metamaterials and metasurfaces [Antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 61, No. 1, 91-135, Feb. 2019.
doi:10.1109/MAP.2018.2883018
57. Chakraborty, S., M. Gangapadhyaya, B. Sinha, and M. Chakraborty, "Miniaturization of rectangular microstrip antenna at WiMAX band with slot in patch and ground surface," 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 1-5, Kolkata, India, 2018.
58. Dhakshinamoorthi, M. K., S. Gokulakkrizhna, M. Denesh Kumar, et al. "Rectangular microstrip patch antenna miniaturization using improvised genetic algorithm," 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI), 894-898, Tirunelveli, India, 2020.