Vol. 133
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-05-23
A Novel Wideband Beamforming Antenna for 5G Applications by Eliminating the Phase Shifters and Crossovers from the Butler Matrix
By
Progress In Electromagnetics Research C, Vol. 133, 51-63, 2023
Abstract
In this study, a novel Switched Beam Antenna (SBA) system is proposed and experimentally validated for C-Band applications. The system is made up of a 4 × 4 Butler matrix, whose outputs are connected to four square-looped radiator antenna elements. The originality of the proposed work depends on the construction of a miniaturized beamforming network with minimal complexity, low loss, and low expense. Moreover, designing a system with a broad frequency range enables its use in a variety of applications. Miniaturization is achieved by eliminating the crossover and integrating the 45˚ shifter into the 90˚ hybrid coupler, as well as tilting the antenna array (i.e., making the Butler matrix output and the feed line of the antenna element orthogonal). The simulated results of the phase difference between the suggested Butler matrix outputs closely match the -45˚-135˚ theoretical calculations. The SBA measured results show a wide bandwidth and low insertion loss of 63.64% (4.21-8.14 GHz) and -4.89 dB, respectively. Four orthogonal beams are produced by the proposed structure's input ports 1-4 when they are excited. These beams are aligned at angles of -10˚, 60˚, -60˚, and 10˚ at 5.7 GHz.
Citation
Aicha Bembarka, Larbi Setti, Abdelwahed Tribak, Hafid Tizyi, and Mohssine El Ouahabi, "A Novel Wideband Beamforming Antenna for 5G Applications by Eliminating the Phase Shifters and Crossovers from the Butler Matrix," Progress In Electromagnetics Research C, Vol. 133, 51-63, 2023.
doi:10.2528/PIERC23020703
References

1. Anastasov, J., S. Panic, M. Stefanovic, and P. Spalevic, Fading and Interference Mitigation in Wireless Communications, CRC Press, Inc., 2017.

2. Mahender, K., T. A. Kumar, and K. S. Ramesh, "Analysis of multipath channel fading techniques in wireless communication systems," AIP Conference Proceedings 1952, 020050, 2018.
doi:10.1063/1.5032012

3. Rojsel, P., "RF MEMS-based wireless architectures and front-ends," Handbook of MEMS for Wireless and Mobile Applications, 207-224, 2013.
doi:10.1533/9780857098610.1.207

4. Bembarka, A., L. Setti, A. Tribak, H. Nachouane, and H. Tizyi, "Frequency tunable filtenna using defected ground structure filter in the sub-6 GHz for cognitive radio applications," Progress In Electromagnetics Research C, Vol. 118, 213-229, 2022.
doi:10.2528/PIERC22011403

5. Chaipanya, P., S. Kaewuam, J. Hirunruang, W. Suntara, N. Santalunai, and S. Santalunai, "Dual band switched beam textile antenna for 5G wireless communications," CMC --- Comput. Mat. Contin., Vol. 73, 181-198, 2022.

6. Zulfi, J. S. and A. Munir, "Design and characterization of 4 x 4 Butler matrix for switched-beam antenna array," 2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 238-241, 2021.
doi:10.1109/APWiMob51111.2021.9435206

7. Lialios, D. I., C. L. Zekios, and S. V. Georgakopoulos, "A compact mmWave SIW blass matrix," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 --- Proceedings, 961-962, 2021.

8. Fakoukakis, F. and G. Kyriacou, "Novel Nolen matrix based beamforming networks for series-fed low SLL multibeam antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
doi:10.2528/PIERB13011605

9. Vallappil, A. K., M. K. A. Rahim, B. A. Khawaja, N. A. Murad, and M. G. Mustapha, "Butler matrix based beamforming networks for phased array antenna systems: A comprehensive review and future directions for 5G applications," IEEE Access, Vol. 9, 3970-3987, 2021.
doi:10.1109/ACCESS.2020.3047696

10. Zhu, J., B. Peng, and S. Li, "Cavity-backed high-gain switch beam antenna array for 6-GHz applications," IET Microw. Antennas Propag., Vol. 11, No. 12, 1776-1781, 2017.
doi:10.1049/iet-map.2016.1129

11. Rao, P. H., J. S. Sajin, and K. Kudesia, "Miniaturisation of switched beam array antenna using phase delay properties of CSRR-loaded transmission line," IET Microw. Antennas Propag., Vol. 12, No. 12, 1960-1966, 2018.
doi:10.1049/iet-map.2017.0978

12. Klionovski, K., A. Shamim, and M. S. Sharawi, "5G antenna array with wide-angle beam steering and dual linear polarizations," 2017 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, 1469-1470, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072777

13. Zaidel, D. N. A., S. K. A. Rahim, and N. Seman, "4 x 4 ultra wideband Butler matrix for switched beam array," Wireless Pers. Commun., Vol. 82, No. 4, 2471-2480, 2015.
doi:10.1007/s11277-015-2359-5

14. Tian, G., J. P. Yang, and W. Wu, "A novel compact butler matrix without phase shifter," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 5, 306-308, 2014.
doi:10.1109/LMWC.2014.2306898

15. Jeong, Y. S. and T. W. Kim, "Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 4, 764-770, 2010.
doi:10.1109/TMTT.2010.2041571

16. Bhowmik, P. and T. Moyra, "Modelling and validation of a compact planar Butler matrix by removing crossover," Wirel. Pers. Commun., 5121-5132, 2017.
doi:10.1007/s11277-017-4158-7

17. Adamidis, G., I. Vardiambasis, M. Ioannidou, and T. Kapetanakis, "Design and implementation of single-layer 4 x 4 and 8 x 8 Butler matrices for multibeam antenna arrays," International Journal of Antennas and Propagation, Vol. 2019, 1-12, 2019.
doi:10.1155/2019/1645281

18. Zheng, L. M., Z. T. Lu, B. W. Xu, and S. Y. Zheng, "Flexible millimeter-wave butler matrix based on the low-loss substrate integrated suspended line patch hybrid coupler with arbitrary phase difference and coupling coefficient," Int. J. RF Microw. Comput-Aided Eng., Vol. 31, No. 6, 2021.
doi:10.1002/mmce.22652

19. Han, K., W. Li, and Y. Liu, "Flexible phase difference of 4 x 4 Butler matrix without phase-shifters and crossovers," Int. J. Antennas Propag., 1-7, 2019.
doi:10.1155/2019/4703161

20. Messaoudene, I., H. Youssouf, M. Bilal, and M. Belazzoug, "Performance improvement of multilayer butler matrix for UWB beamforming antenna," Seminar on Detection Systems Architectures and Technologies (DAT), 1-4, 2017.

21. Jia, L., L. Zhang, and C. Zhang, "A dual-band and wide-band branch-line coupler with a large frequency ratio," Microw. Opt. Technol. Lett., Vol. 63, No. 1, 146-151, 2021.
doi:10.1002/mop.32592

22. Bembarka, A., A. Tribak, H. Nachouane, L. Setti, and A. Mediavilla, "Wideband and electronically tunable microwave phase shifter using varactors with relative phase shifts up to 360," Int. J. Microw. Opt. Technol., Vol. 16, No. 13, 252-260, 2021.

23. Huong, H. T., "Beamforming phased array antenna toward indoor positioning applications," Advanced Radio Frequency Antennas for Modern Communication and Medical Systems, 2020.

24. Reddy, M. H., D. Siddle, and D. Sheela, "Design and implementation of a beam-steering antenna array using Butler matrix feed network for X-band applications," AEU Int. J. Electron Commun., Vol. 147, 154147, 2022.
doi:10.1016/j.aeue.2022.154147

25. Jung, B.-R., Y.-B. Park, S.-Y. Kang, J.-H. Jung, J.-G. Ju, and Y. Yun, "Highly miniaturized on- hip 90 hybrid coupler employing transmission line with periodic structure," PIERS Proceedings, 1642-1644, Xi'an, China, March 22-26, 2010.

26. Substrate Rogers RO4000C series laminates data sheet, Rogers Corp., "http://www.rogerscorp.com," January 6, 2023.

27. Babale, S. A., S. K. Abdul Rahim, O. A. Barro, M. Himdi, and M. Khalily, "Single layered 4 x 4 butler matrix without phase-shifters and crossovers," IEEE Access, Vol. 6, 77289-77298, 2018.
doi:10.1109/ACCESS.2018.2881605

28. Wen, J. M., C. K. Wang, W. Hong, Y. M. Pan, and S. Y. Zheng, "A wideband switched-beam antenna array fed by compact single-layer butler matrix," IEEE Trans. Antennas Propag., Vol. 69, No. 8, 5130-5135, 2021.
doi:10.1109/TAP.2021.3060040

29. Nedil, M., T. A. Denidni, and L. Talbi, "Novel butler matrix using CPW multilayer technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 499-507, 2006.
doi:10.1109/TMTT.2005.860490

30. Bantavis, P. I., C. I. Kolitsidas, T. Empliouk, M. Le Roy, B. L. G. Jonsson, and G. A. Kyriacou, "A cost-effective wideband switched beam antenna system for a small cell base station," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 6851-6861, 2018.
doi:10.1109/TAP.2018.2874494

31. Mousavirazi, Z., V. Rafiei, and T. A. Denidni, "Beam-switching antenna array with dual-circular-polarized operation for WiMAX applications," AEU Int. J. Electron Commun., Vol. 137, 153796, 2021.
doi:10.1016/j.aeue.2021.153796