1. Mohanty, M. N., S. Satrusallya, and T. Al Smadi, "Antenna selection criteria and parameters for IoT application," Printed Antennas Design and Challenges, CRC Press, 2023.
2. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, 2016.
3. Khan, U. R., J. A. Sheikh, A. Junaid, R. Amin, S. Ashraf, and S. Ahmed, "Design of a compact hybrid Moore's fractal inspired wearable antenna for IoT enabled bio-telemetry in diagnostic health monitoring system," IEEE Access, Vol. 10, 116129-116140, 2022, doi: 10.1109/ACCESS.2022.3219442.
doi:10.1109/ACCESS.2022.3219442
4. Puente, C., J. Romeu, R. Pous, X. Garcia, and F. Benitez, "Fractal multiband antenna based on the Sierpinski gasket," Electronics Letters, Vol. 32, No. 1, 1-2, 1996.
doi:10.1049/el:19960033
5. Parker, E. A. and A. N. A. El Sheikh, "Convoluted array elements and reduced size unit cells for frequency-selective surfaces," IEE Proceedings. Part H, Vol. 1, 19-22, 1991.
6. Sediq, H. T., J. Nourinia, C. Ghobadi, and B. Mohammadi, "A novel shaped ultrawideband fractal antenna for medical purposes," Biomedical Signal Processing and Control, Vol. 80, Part 2, 104363, February 2023, https://doi.org/10.1016/j.bspc.2022.104363.
7. Mohanty, A. and S. Sahu, "2-D printed 8-element compact UWB diversity antenna for multi-service-multi-mode applications," International Journal of Electronics and Communications, Vol. 151, 154215, July 2022, https://doi.org/10.1016/j.aeue.2022.154215.
8. Mohanty, A. and S. Sahu, "Design of 8-port compact hybrid fractal UWB MIMO antenna with a conjoined reflector-ground integration for isolation improvement," International Journal of Electronics and Communications, Vol. 145, 154102, February 2022, https://doi.org/10.1016/j.aeue.2021.154102.
doi:10.1016/j.aeue.2021.154102
9. Sree, G. N. J. and S. Nelaturi, "Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications," International Journal of Electronics and Communications, Vol. 137, 153797, July 2021, https://doi.org/10.1016/j.aeue.2021.153797.
10. Baqira, M. A., H. Latifa, O. Altintas, M. N. Akhtar, M. Karaaslan, H. Servera, M. Hameed, and N. M. Idreesd, "Fractal metamaterial based multiband absorber operating in 5G regime," Optik, Vol. 266, 169626, September 2022, https://doi.org/10.1016/j.ijleo.2022.169626.
doi:10.1016/j.ijleo.2022.169626
11. Karanam, R. and D. Kakkar, "Artificial neural network optimized ultra wide band fractal antenna for vehicular communication applications," Transactions on Emerging Telecommunications Technologies, Vol. 33, No. 12, e4620, 2022, https://doi.org/10.1002/ett.4620.
doi:10.1002/ett.4620
12. Alqahtani, A., M. T. Islam, M. S. Talukder, M. Samsuzzaman, M. Bakouri, S. Mansouri, T. Almoneef, S. Dokos, and Y. Alharbi, "Slotted monopole patch antenna for microwave-based head imaging applications," Sensors, Vol. 22, 7235, 2022, https://doi.org/10.3390/s22197235.
doi:10.3390/s22197235
13. Desai, A., T. K. Upadhyaya, R. Patel, S. Bhatt, and P. Mankodi, "Wideband high gain fractal antenna for wireless applications," Progress In Electromagnetics Research Letters, Vol. 74, 125-130, 2018.
doi:10.2528/PIERL18011504
14. Jamil, A., M. Rauf, A. Sami, A. Ansari, and M. D. Idrees, "A wideband hybrid fractal ring antenna for WLAN applications," International Journal of Antennas and Propagation, Vol. Article ID 6136916, 8 pages, Hindawi, 2022, https://doi.org/10.1155/2022/6136916, 2022.
15. Strojny, B. T., "Excitation and analysis of characteristic modes on complex antenna structures,", The Ohio State University, 2011.
16. Kalkhambkar, G. B., R. Khanai, and P. Chindhi, "Design and characteristics mode analysis of a cantor set fractal monopole antenna for IoT applications," Progress In Electromagnetics Research C, Vol. 119, 161-175, 2022.
doi:10.2528/PIERC22012106
17. Sagne, D. and R. A. Pandhare, "Design and analysis of inscribed fractal super wideband antenna for microwave applications," Progress In Electromagnetics Research C, Vol. 121, 49-63, 2022.
doi:10.2528/PIERC22030703
18. https://coppermountaintech.com/help-s4/smith-chart-format.html.
19. Goudos, S. K., C. Kalialakis, and R. Mittra, "Evolutionary algorithms applied to antennas and propagation: A review of state of the art," International Journal of Antennas and Propagation, 1-12, 2016, doi: 10.1155/2016/1010459.
20. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, 1995, doi: 10.1109/74.382334.
doi:10.1109/74.382334
21. Lamsalli, M., A. El Hamichi, M. Boussouis, N. A. Touhami, and T. Elhamadi, "Genetic algorithm optimization for microstrip patch antenna miniaturization," Progress In Electromagnetics Research Letters, Vol. 60, 113-120, 2016.
doi:10.2528/PIERL16041907
22. Lim, S. P. and H. Haron, "Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions," 2013 IEEE Conference on Open Systems (ICOS), 41-46, Kuching, Malaysia, 2013, doi: 10.1109/icos.2013.6735045.
23. Liu, H., C.-Y. Yin, and W.-D. Gao, "Optimization and design of wideband antenna with adaptive differential evolution algorithm based on dual population," IEEE 2015 Asia-Pacific Microwave Conference (APMC), 1-3, Nanjing, China, 2015, doi: 10.1109/apmc.2015.7413230.