Vol. 131
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-20
Yttria-Stabilized Zirconia Based Patch Antenna for Harsh Environment Applications
By
Progress In Electromagnetics Research C, Vol. 131, 89-101, 2023
Abstract
Wireless devices that can operate under harsh environments are of great interest for military, space, and commercial applications such as antennas and radomes for fighter jets, wireless sensor networks for oil drilling and aircraft propulsion, and safety devices for first responders. Since antennas are key components of Radio Frequency (RF) Systems, it is crucial to have the antenna be able to withstand the same environmental hardships for a reliable and efficient communication. Various substrates have been utilized to implement antennas to withstand harsh environments and particularly high temperatures. Existing solutions such as silicon carbide (SiC), alumina, and polymer derived ceramics require complex deposition and patterning techniques, which make them unsuitable for low-cost RF and microwave applications. The main objective of this study is to explore microstrip patch antenna fabrication technology utilizing Zirconia Ribbon Ceramic (ZRC) materials and assess ZRC as a potential dielectric substrate for harsh environment applications. To do so, first, a wideband coplanar waveguide (CPW) fed monopole antenna is presented on ZRC substrate operating within the S band. The proposed design has been manufactured using two separate methods including a clean room sputtering process and inkjet printing. A good agreement has been obtained between the measured results of the inkjet-printed prototype and simulations. Impedance matching and radiation patterns are investigated. The inkjet printing process has been shown to be a viable and cost-effective solution for fabricating ZRC-based patch antennas.
Citation
Aleks Mertvyy, Md. Samiul Islam Sagar, Noah Renk, Praveen Kumar Sekhar, and Tutku Karacolak, "Yttria-Stabilized Zirconia Based Patch Antenna for Harsh Environment Applications," Progress In Electromagnetics Research C, Vol. 131, 89-101, 2023.
doi:10.2528/PIERC23020101
References

1. Schubert, E. and S. Markus, "Evaluation of wireless sensor technologies in a firefighting environment," Proceedings of International Conference on Networked Sensing Systems (INSS), IEEE Xplore, Kassel, Germany, June 15-18, 2010.

2. Werner-Allen, G., J. Johnson, M. Ruiz, J. Lees, and M. Welsh, "Monitoring volcanic eruptions with a wireless sensor network," Proceedings of the Second European Workshop on Wireless Sensor Networks, IEEE Xplore, Istanbul, Turkey, February 2, 2005.

3. Weng, F., H. Yang, and X. Zou, "On convertibility from antenna to sensor brightness temperature for ATMs," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 4, 771-775, 2013.
doi:10.1109/LGRS.2012.2223193

4. Bangert, J. T., R. S. Engelbrecht, E. T. Harkless, R. V. Sperry, and E. J. Walsh, "The spacecraft antennas," The Bell System Technical Journal, Vol. 42, No. 4, 869-897, 1963.
doi:10.1002/j.1538-7305.1963.tb04022.x

5. Bittner, D., A. Cody, C. Eubank, C. Jorgensen, T. Reppert, J. Shultis, B. Streetman, and D. Ziegler, "Follow-on mission for the hubble space telescope,", 2004.

6. Specifications "SZ0429 Yttria stabilized Zirconia Y2O3*ZrO2 (YSZ)," Stanford Advanced Materials, [Online], Available: https://www.samaterials.com/zirconium/429-yttria-stabilized-zirconia.html.

7. Aryal, M., S. W. Allison, K. Olenick, and F. Sabri, "Flexible thin film ceramics for high temperature thermal sensing applications," Optical Materials, Vol. 100, 109656, 2020.
doi:10.1016/j.optmat.2020.109656

8. Koo, J. Y., Y. Lim, Y. B. Kim, D. Byun, and W. Lee, "Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells," International Journal of Hydrogen Energy, Vol. 42, No. 24, 15903-15907, 2017.
doi:10.1016/j.ijhydene.2017.04.099

9. Soon, G., B. Pingguan-Murphy, and S. A. Akbar, "Modulation of osteoblast behavior on nanopatterned yttria-stabilized zirconia surfaces," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 68, 26-31, 2017.
doi:10.1016/j.jmbbm.2017.01.028

10. López-Gándara, C., F. M. Ramos, and A. Cirera, "YSZ-based oxygen sensors and the use of nanomaterials: A review from classical models to current trends," Journal of Sensors, Vol. 2009, 1-15, 2009.
doi:10.1155/2009/258489

11. Skinner, S. J., J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, "YAG: YSZ composites as potential thermographic phosphors for high temperature sensor applications," Sensors and Actuators B: Chemical, Vol. 136, No. 1, 52-59, 2009.
doi:10.1016/j.snb.2008.10.070

12. Zhu, Y., K. Liu, J. Deng, J. Ye, F. Ai, H. Ouyang, T. Wu, J. Jia, X. Cheng, and X. Wang, "3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties," Int. J. Nanomed., Vol. 14, 5977-5987, 2019.
doi:10.2147/IJN.S202457

13. Moura, C. G., H. Dinis, O. Carvalho, P. M. Mendes, R. M. Nascimento, and F. S. Silva, "A novel approach for micro-antenna fabrication on ZrO2 substrate assisted by laser printing for smart implants," Applied Sciences, Vol. 12, 9333, 2022.
doi:10.3390/app12189333

14. Moura, C. G., D. Faria, O. Carvalho, R. Pereira, M. Cerqueira, R. Nascimento, and F. S. Silva, "Laser printing of silver-based micro-wires in ZrO2 substrate for smart implant applications," Optics & Laser Technology, Vol. 131, 106416, 2020.
doi:10.1016/j.optlastec.2020.106416

15. Wang, S., L. Zhu, Y. Li, G. Zhang, J. Yang, J. Wang, and W. Wu, "Radar cross-section reduction of helical antenna by replacing metal with 3-D printed zirconia ceramic," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 2, 350-354, 2020.
doi:10.1109/LAWP.2019.2962524

16. Oh, Y., V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M. A. Abraham, J. M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, and J. J. Adams, "Microwave dielectric properties of zirconia fabricated using nanoparticle jetting," Additive Manufacturing, Vol. 27, 586-594, 2019.
doi:10.1016/j.addma.2019.04.005

17. Mejias-Morillo, C. R., J. B. Shivakumar, S. L. Yu, B. Roberts, P. Cortes, E. Macdonald, A. V. Polotai, and E. A. Rojas-Nastrucci, "High-temperature additively manufactured C-band antennas using material jetting of zirconia and micro-dispending of platinum paste," IEEE Open Journal of Antennas and Propagation, Vol. 3, 1289-1301, 2022.
doi:10.1109/OJAP.2022.3218798

18. Mummareddy, B., D. Negro, V. T. Bharambe, Y. Oh, E. Burden, M. Ahlfors, J. Choi, A. D. Plessis, J. Adams, E. Macdonald, and P. Cortes, "Mechanical properties of material jetted zirconia complex geometries with hot isostatic pressing," Advances in Industrial and Manufacturing Engineering, Vol. 3, 100052, 2021.
doi:10.1016/j.aime.2021.100052

19. Harrop, P. J. and J. N. Wanklyn, "The dielectric constant of zirconia," British Journal of Applied Physics, Vol. 18, 739, 1967.
doi:10.1088/0508-3443/18/6/305

20. Elena de Cos Gomez, M., H. Fernandez Alvarez, B. Puerto Valcarce, C. Garcia Gonzalez, J. Olenick, and F. Las-Heras Andres, "Zirconia-based ultra-thin compact flexible CPW-fed slot antenna for IoT," Micromachines, Vol. 19, No. 14, 3134, 2019.

21. Datasheet "ENrG thin E-strate®, Zirconia Ribbon Ceramic Substrate," MatWeb: Material Property Data, [Online], Available: https://www.matweb.com/search/datasheet.aspxmatguid=7a3cd87004934e1f83f0fd7f34813948& ckck=1.

22. Hertleer, C., H. Rogier, L. Vallozzi, and L. Van Langenhove, "A textile antenna for off-body communication integrated into protective clothing for firefighters," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 919-925, 2009.
doi:10.1109/TAP.2009.2014574

23. Vanveerdeghem, P., H. Rogier, J. Knockaert, P. Van Torre, and C. Stevens, "Flexible dual-diversity wearable wireless mode integrated on dual-polarised textile patch antenna," IET Science, Measurement & Technology, Vol. 8, No. 6, 452-458, 2014.
doi:10.1049/iet-smt.2013.0224

24. Declercq, F., A. Georgiadis, and H. Rogier, "Wearable aperture-coupled shorted solar patch antenna for remote tracking and monitoring applications," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), IEEE Xplore, Rome, Italy, May 31, 2011.

25. Rhys Le Comte, B., G. Sen Gupta, and M. Tin Chew, "Distributed sensors for hazard detection in an urban search and rescue operation," 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, IEEE Xplore, Graz, Austria, July 2, 2012.

26. Karacolak, T., R. V. K. Thirmulai, J. Neil Merrett, Y. Koshka, and E. Topsakal, "Silicon Carbide (SiC) antennas for high-temperature and high-power applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 409-412, 2013.
doi:10.1109/LAWP.2013.2251599

27. Scardelletti, M. C., J. L. Jordan, and G. E. Ponchak, "Temperature dependency (25˚C-400˚C) of a planar folded slot antenna on alumina substrate," IEEE Antenna and Wireless Propagation Letters, Vol. 7, 489-492, 2008.
doi:10.1109/LAWP.2008.2006068

28. Cheng, H., X. Ren, S. Ebadi, and X. Gong, "A wide-band square slot antenna for high-temperature applications," Proceedings IEEE APS/URSI International Symposium, IEEE Xplore, Orlando, Florida, January 27, 2014.

29. Cheng, H., X. Ren, S. Ebadi, Y. Chen, L. An, and X. Gong, "Wireless passive temperature sensors using integrated cylindrical resonator/antenna for harsh-environment applications," IEEE Sensors Journal, Vol. 15, No. 3, 1453-1462, 2014.
doi:10.1109/JSEN.2014.2363426

30. Yan, D., Y. Yang, Y. Hong, T. Liang, Z. Yao, X. Chen, and J. Xiong, "AlN-based ceramic patch antenna-type wireless passive high-temperature sensor," Micromachines, Vol. 8, No. 10, 301, 2017.
doi:10.3390/mi8100301

31. Zhu, D., "Aerospace ceramic materials: Thermal, environmental barrier coatings and SiC/SiC ceramic matrix composites for turbine engine applications," Nat. Aeronaut. Space Admin., NASA/TM-2018-219884, 2018.

32. Mertvyy, A., N. Renk, V. Bigelow, B. A. Younes, P. Sekhar, and T. Karacolak, "A wideband CPW-fed monopole antenna for high-temperature applications," Proceedings IEEE APS/URSI International Symposium, IEEE Xplore, Denver, Colorado, July 10-15, 2022.

33. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2016.

34. Pozar, D. M., "Microstrip antennas," Proceedings of the IEEE, Vol. 80, No. 1, 79-91, 1992.
doi:10.1109/5.119568

35. Depla, D., S. Mahieu, and J. E. Greene, Sputter Deposition Processes, 253-296, William Andrew Applied Science Publishers, 2009.

36. FUJIFILM Specification Sheet "Dimatix® Materials Cartridge - Samba® Cartridge," FUJIFILM Dimatix, [Online], Available: https://f.hubspotusercontent30.net/hubfs/5352080/Samba%20Cartridge.pdf.