Vol. 134
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-13
Towards Validatinga Coaxial Transmission Cell for Dielectric Measurements on Liquids
By
Progress In Electromagnetics Research C, Vol. 134, 223-236, 2023
Abstract
Moisture measurement in industrial applications, both in liquid and solid materials, presents a significant challenge. In the field of biofuels, this becomes even more critical. Among the various approaches developed for this purpose, indirect electromagnetic techniques have emerged as a valuable tool for accurately estimating moisture content. These techniques utilize the complex dielectric permittivity ε as an intermediary parameter, which is influenced by the water content in the material. As a first step toward this purpose, a 1''5/8 two-port coaxial transmission cell, developed at LNE-CETIAT, was studied to make dielectric measurements on liquids. Characterization and validation steps were requested to demonstrate the accuracy of this cell. For this purpose, an intra-laboratory comparison has been performed first at LNE-CETIAT using the 1''5/8 cell and the EpsiMu® coaxial cell - a fully validated reference tool. Then, an inter-laboratory comparison with the Fresnel Institute has been performed using a coaxial probe and another EpsiMu®cell. The measurements were carried out under identical ambient conditions, using liquid reference materials. In this work, the performance of the developed cell in the frequency band [0,1-1,1] GHz has been validated, as well as the accuracy of the three electromagnetic techniques used. The results of the experiments confirm the effectiveness of the 1''5/8 cell developed at LNE-CETIAT for measuring the dielectric properties of liquids.
Citation
Bayan Tallawi, Floriane Sparma, Eric Georgin, and Pierre Sabouroux, "Towards Validatinga Coaxial Transmission Cell for Dielectric Measurements on Liquids," Progress In Electromagnetics Research C, Vol. 134, 223-236, 2023.
doi:10.2528/PIERC23013104
References

1. BiofMet, 19ENG09, New metrological methods for biofuel materials analysis, 2020-2023, biofmet.eu.

2. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil-water content --- Measurements in coaxial transmission-line," Water Resources Research, Vol. 16, 574-582, 1980.
doi:10.1029/WR016i003p00574

3. Kupfer, K., Electromagnetic Aquametry --- Electromagnetic Wave Interaction with Water and Moist Substances, Springer, 2005, link.springer.com/book/10.1007/b137700.
doi:10.1007/b137700

4. Ochsner, A., L. F. M. da Silva, and H. Altenbach, "Advanced structured materials," Structmat, 2015, springer.com/series/8611.

5. Antunes Neves, A. L., Application au domaine biomedical des moyens de caracterisation electromagnetique de materiaux dans le spectre des micro-ondes, Thesis doctoral, Aix Marseille University, Marseille, 2017, theses.fr/2017AIXM0320.

6. Fasoula, A., J. G. Bernard, G. Robin, and L. Duchesne, "Elaborated breast phantoms and experimental benchmarking of a microwave breast imaging system before first clinical," Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP), London, UK, April 9-13, 2018.

7. Rodriguez-Duarte, D. O., C. Origlia, J. A. Tobon Vasquez, R. Scapaticci, L. Crocco, and F. Vipiana, "Experimental assessment of real-time brain stroke monitoring via a microwave imaging scanner," IEEE Open Journal of Antennas and Propagation, Vol. 3, 824-835, 2022.
doi:10.1109/OJAP.2022.3192884

8. Ben Ayoub, M. W., Dispositifs de mesure de constantes dielectriques dans les materiaux humides. Vers une meilleure tracabilite de la mesure de l'humidite des solides, Thesis doctoral, Aix Marseille University, 2018, theses.fr/2018AIXM0228.

9. Dubois, J. and J. M. Paindavoine, "Humidite dans les solides, liquides et gaz," Technique de l'ingenieur, April 10, 1982, P3760A v1.

10. Wernecke, R. and J. Wernecke, Industrial moisture and humidity measurement, a practical guide, February 2014, researchgate.net/publication/267376137.
doi:10.1002/9783527652419

11. Bhunjun, R. and R. W. Vogt, "Sensor system for contactless and online moisture measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 11, 3034-3040, November 2010.
doi:10.1109/TIM.2010.2046692

12. Skierucha, W., A. Szyp lowska, and A. Wilczek, "Aquametry in agrophysics," Advances in Agrophysical Research, 17-45, S. Grundas, A. Stepniewski, InTech., 2013.

13. Roussy, G. and J. A. Pearce, Foundations and Industrial Applications of Microwave and Radio Frequency Fields: Physical and Chemical Processes, Wiley, July 1995, wiley.com/en-us/9780471938491.

14. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, Ltd, 2004, wiley.com/en-us/9780470844922.
doi:10.1002/0470020466

15. Georget, E., "Preuve de concept d'une liaison radio mer-air d'une balise autonome de petites dimensions --- Projet BELOCOPA Conception d'antennes multi-bandes sur substrat souple,", Thesis doctoral arseille, Aix Marseille University, 2014, hal.science/tel-01115478v1.

16. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

17. Lange, E. A., P. P. Puzak, and L. A. Cooley, "Standard method for the 5/8 inch dynamic tear test," NRL Report, 7159, Naval Research Lab, Washington DC, 1970.

18. Ba, D. and P. Sabouroux, "EpsiMu, a toolkit for permittivity and permeability measurement in microwave domain at real time of all materials: Applications to solid and semisolid materials," Microwave and Optical Technology Letters, Vol. 52, No. 12, 2010.
doi:10.1002/mop.25570

19. Gioia, A. L., E. Porter, I. Merunka, A. Shahzad, S. Salahuddin, M. Jones, and M. O'Halloran, "Open-ended coaxial probe technique for dielectric measurement of biological tissues: Challenges and common practices," Diagnotiscs, Vol. 8, No. 2, 2018.

20. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection an short-circuit line methods for measuring permittivity and permeability," NIST Technical Note, 1355, 1993, nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1355r.pdf.

21. Gregory, A. P. and R. N. Clarke, "Tables of the complex permittivity of dielectric reference liquids at frequencies up to 5 GHz," Technical Report, MAT 23, National Physical Laboratory, 2012.

22. Maryott, A. A. and E. R. Smith, Table of dielectric constants of pure liquids, National Bureau of Standards, Washington D.C., 1951, nvlpubs.nist.gov/nistpubs/Legacy/circ/nbscircular514.pdf.