Vol. 131
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-11
Compact 4-Port Vivaldi MIMO Antenna for 5G Wireless Devices
By
Progress In Electromagnetics Research C, Vol. 131, 13-24, 2023
Abstract
In this paper, a novel compact 4-port Vivaldi Multiple Input Multiple Output (MIMO) antenna is proposed for 5G wireless devices. The presented antenna has dimensions 40x40x1.6 mm3. The suggested antenna is fabricated on RT/Duroid dielectric material with dielectric constant of 2.2. The orthogonal arrangement of antenna elements and embedding slits between them result in enhanced isolation. The gain observed for the proposed antenna is 2.405 dB. The diversity performance of MIMO structure in terms of Envelop Correlation Coefficient (ECC < 0.02), Total Active Reflection Coefficient (TARC < -10 dB), Diversity Gain (DG > 9.998), Channel capacity Loss (CCL < 0.4) and Mean Effective Gain (MEG < 1 dB) is studied and analyzed. The simulated and measured results are in good agreement.
Citation
Golla Ramyasree, and Nelaturi Suman, "Compact 4-Port Vivaldi MIMO Antenna for 5G Wireless Devices," Progress In Electromagnetics Research C, Vol. 131, 13-24, 2023.
doi:10.2528/PIERC23012806
References

1. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020, doi: 10.1109/ACCESS.2020.3020952.
doi:10.1109/ACCESS.2020.3020952

2. Recioui, A., "Capacity optimization of MIMO systems involving conformal antenna arrays using a search group algorithm," Algerian Journal of Signals and Systems, Vol. 5, No. 4, 209-214, 2020.
doi:10.51485/ajss.v5i4.118

3. Recioui, A. and Y. Grainat, "Application and optimization of MIMO communication in wide area monitoring systems," International Journal of Data Science, Vol. 1, No. 2, 82-98, 2020.
doi:10.18517/ijods.1.2.82-98.2020

4. Zhao, L., F. Liu, X, Shen, et al. "A high-pass antenna interference cancellation chip for mutual coupling reduction of antennas in contiguous frequency bands," IEEE Access, Vol. 6, 38097-38105, 2018.
doi:10.1109/ACCESS.2018.2853709

5. Liu, F., J. Guo, L. Zhao, et al. "Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1751-1756, 2020.
doi:10.1109/TAP.2020.3016388

6. Luo, S., P. Mei, Y. Zhang, G. F. Pedersen, and S. Zhang, "Decoupling of dual-polarized antenna arrays using non-resonant metasurface," Sensors, Vol. 23, No. 1, 152, Dec. 2022, doi: 10.3390/s23010152.
doi:10.3390/s23010152

7. Kai, Y., Y. Li, and X. Liu, "Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures," The Applied Computational Electromagnetics Society Journal (ACES), 758-763, 2018.

8. Guo, J., F. Liu, L. Zhao, et al. "Meta-surface antenna array decoupling designs for two linear polarized antennas coupled in H-plane and E-plane," IEEE Access, Vol. 7, 100442-100452, 2019.
doi:10.1109/ACCESS.2019.2930687

9. Chae, S. H., S. Oh, and S. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 122-125, 2007, doi: 10.1109/LAWP.2007.893109.
doi:10.1109/LAWP.2007.893109

10. Yang, L., T. Li, and S. Yan, "Highly compact MIMO antenna system for LTE/ISM applications," International Journal of Antennas and Propagation, 2015, https://doi.org/10.1155/2015/714817.

11. Anitha, R., S. Mathew, P. V. Vinesh, P. Mohanan, and K. Vasudevan, "Compact 4 port MIMO antenna using polarization and pattern diversity," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), 1-4, 2015, doi: 10.1109/WAMICON.2015.7120360.

12. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, Oct. 2016, doi: 10.1109/TAP.2016.2593932.
doi:10.1109/TAP.2016.2593932

13. Iqbal, A., O. A Saraereh, A. Bouazizi, and A. Basir, "Metamaterial-based highly isolated MIMO antenna for portable wireless applications," Electronics, Vol. 7, No. 10, 267, Oct. 2018, doi: 10.3390/electronics7100267.
doi:10.3390/electronics7100267

14. Sree, G. N. J. and S. Nelaturi, "Opportunistic control of crescent shape MIMO design for lower sub 6 GHz 5G applications," Microw. Opt. Technol. Lett., Vol. 64, 896-904, 2022, doi: 10.1002/mop.33211.
doi:10.1002/mop.33211

15. Gomase, R. and S. Nandi, "A circular patch dual-band MIMO antenna for sub-6 GHz applications," 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), 1-4, 2019, doi: 10.1109/InCAP47789.2019.9134499.

16. Krishnamoorthy, R., A. Desai, R. Patel, et al. "4 element compact triple band MIMO antenna for sub-6 GHz 5G wireless applications," Wireless Netw., Vol. 27, 3747-3759, 2021, https://doi.org/10.1007/s11276-021-02734-8.
doi:10.1007/s11276-021-02734-8

17. Desai, A., et al. "Transparent 2-element 5G MIMO antenna for sub-6 GHz applications," Electronics, Vol. 11, No. 2, 251, Jan. 2022, doi: 10.3390/electronics11020251.
doi:10.3390/electronics11020251

18. Sree, G. N. J. and S. Nelaturi, "Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications," AEU-International Journal of Electronics and Communications, Vol. 137, 153797, 2021.

19. Wang, F., Z. Duan, X. Wang, et al. "High isolation millimeter-wave wideband MIMO antenna for 5G communication," International Journal of Antennas and Propagation, 2019, https://doi.org/10.1155/2019/4283010.

20. Khandelwal, M. and K. Binod, "Implementation of four-port MIMO diversity microstrip antenna with suppressed mutual coupling and cross-polarized radiations," Microsystem Technologies, 993-1000, 2020, doi: 10.1007/s00542-019-04574-1.

21. Khalid, M., S. I. Naqvi, N. Hussain, et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, Jan. 2020, doi: 10.3390/electronics9010071.
doi:10.3390/electronics9010071

22. Sehrai, D. A., M. Abdullah, A. Altaf, et al. "A novel high gain wideband MIMO antenna for 5G millimeter wave applications," Electronics, Vol. 9, No. 6, 1031, Jun. 2020, doi: 10.3390/electronics9061031.
doi:10.3390/electronics9061031

23. Amrutha, P., K. L. V. Prasad, and S. Kumar, "Highly isolated fork-shaped MIMO antenna for 5G application," 2021 Asian Conference on Innovation in Technology (ASIANCON), 1-4, 2021, doi: 10.1109/ASIANCON51346.2021.9545004.

24. Hussain, N., W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications," AEU - International Journal of Electronics and Communications, Vol. 132, 2021, https://doi.org/10.1016/j.aeue.2021.153612.

25. Fan, C., B. Wu, Y. Hu, Y. Zhao, and T. Su, "Millimeter-wave pattern recon gurable Vivaldi antenna using tunable resistor based on graphene," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4939-4943, Jun. 2020, doi: 10.1109/TAP.2019.2952639.
doi:10.1109/TAP.2019.2952639

26. Gibson, P. J., "The Vivaldi aerial," 1979 9th European Microwave Conference, 101-105, 1979, doi: 10.1109/EUMA.1979.332681.
doi:10.1109/EUMA.1979.332681

27. Gjokaj, V., J. Papapolymerou, J. D. Albrecht, B. Wright, and P. Chahal, "A compact receive module in 3-D printed Vivaldi antenna," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 10, No. 2, 343-346, Feb. 2020, doi: 10.1109/TCPMT.2019.2961345.
doi:10.1109/TCPMT.2019.2961345

28. Shan, J., A. Xu, and J. Lin, "A parametric study of microstrip-fed Vivaldi antenna," 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 1099-1103, 2017, doi: 10.1109/CompComm.2017.8322713.
doi:10.1109/CompComm.2017.8322713

29. Li, Z., C. Yin, and X. Zhu, "Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019, doi: 10.1109/ACCESS.2019.2906338.
doi:10.1109/ACCESS.2019.2906338

30. Li, Q. and Y. Sun, "A high isolation UWB MIMO antenna based on angle diversity," 2020 IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2020, doi: 10.1109/IWS49314.2020.9360073.

31. Fritz-Andrade, E., H. Jardon-Aguilar, and J. A. Tirado-Mendez, "The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, e22113, 2020, https://doi.org/10.1002/mmce.22113.

32. Elsheakh, D. M. and E. A. Abdallah, "Ultrawideband Vivaldi antenna for DVB-T, WLAN and WiMAX applications," Research Article in International Journal of Antennas and Propagation, 2014, http://dx.doi.org/10.1155/2014/761634.

33. Zhu, Y., D. Su, W. Xie, Z. Liu, and K. Zuo, "Design of a novel miniaturized Vivaldi antenna with loading resistance for ultra wideband (UWB) applications," ACES Journal, Vol. 32, No. 10, 895-900, Jul. 2021.

34. Paul, L. C. and M. M. Islam, "A super wideband directional compact Vivaldi antenna for lower 5G satellite applications," Research Article in International Journal of Antennas and Propagation, 2021, https://doi.org/10.1155/2021/8933103.

35. Ren, J., H. Fan, Q. Tang, Z. Yu, Y. Xiao, and X. Zhou, "An ultra-wideband Vivaldi antenna system for long-distance electromagnetic detection," Applied Sciences, Vol. 12, No. 1, 528, Jan. 2022, doi: 10.3390/app12010528.
doi:10.3390/app12010528

36. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," 2015 23rd Telecommunications Forum Telfor (TELFOR), 587-590, 2015, doi: 10.1109/TELFOR.2015.7377536.
doi:10.1109/TELFOR.2015.7377536

37. Zhu, S., H. Liu, Z. Chen, and P. Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 776-779, May 2018, doi: 10.1109/LAWP.2018.2816038.
doi:10.1109/LAWP.2018.2816038

38. Ikram, M., N. Nguyen-Trong, and A. M. Abbosh, "Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices," IEEE Access, Vol. 7, 159112-159118, 2019, doi: 10.1109/ACCESS.2019.2950660.
doi:10.1109/ACCESS.2019.2950660

39. Truong, L., G. Truong, and T. Tran, "A new linear printed Vivaldi antenna array with low side lobe level and high gain for the band 3.5 GHz," REV Journal on Electronics and Communications, 2020, doi: 10.10.21553/rev-jec.247.

40. Aathmanesan, T., "Novel slotted hexagonal patch antenna for sub-6 GHz 5G wireless applications," ICTACT Journal on Microelectronics, 1010-1013, 2021, doi: 10.21917/ijme.2021.0176.

41. Mishra, M., S. Chaudhuri, and R. S. Kshetrimayum, "Low mutual coupling four-port MIMO antenna array for 3.5 GHz WiMAX application," 2020 IEEE Region 10 Symposium (TENSYMP), 791-794, 2020, doi: 10.1109/TENSYMP50017.2020.923104.
doi:10.1109/TENSYMP50017.2020.9231046

42. Tebache, S., A. Belouchrani, F. Ghanem, and A. Mansoul, "Novel reliable and practical decoupling mechanism for strongly coupled antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 5892-5899, Sept. 2019, doi: 10.1109/TAP.2018.2885.
doi:10.1109/TAP.2018.2885457