1. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020, doi: 10.1109/ACCESS.2020.3020952.
doi:10.1109/ACCESS.2020.3020952
2. Recioui, A., "Capacity optimization of MIMO systems involving conformal antenna arrays using a search group algorithm," Algerian Journal of Signals and Systems, Vol. 5, No. 4, 209-214, 2020.
doi:10.51485/ajss.v5i4.118
3. Recioui, A. and Y. Grainat, "Application and optimization of MIMO communication in wide area monitoring systems," International Journal of Data Science, Vol. 1, No. 2, 82-98, 2020.
doi:10.18517/ijods.1.2.82-98.2020
4. Zhao, L., F. Liu, X, Shen, et al. "A high-pass antenna interference cancellation chip for mutual coupling reduction of antennas in contiguous frequency bands," IEEE Access, Vol. 6, 38097-38105, 2018.
doi:10.1109/ACCESS.2018.2853709
5. Liu, F., J. Guo, L. Zhao, et al. "Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1751-1756, 2020.
doi:10.1109/TAP.2020.3016388
6. Luo, S., P. Mei, Y. Zhang, G. F. Pedersen, and S. Zhang, "Decoupling of dual-polarized antenna arrays using non-resonant metasurface," Sensors, Vol. 23, No. 1, 152, Dec. 2022, doi: 10.3390/s23010152.
doi:10.3390/s23010152
7. Kai, Y., Y. Li, and X. Liu, "Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures," The Applied Computational Electromagnetics Society Journal (ACES), 758-763, 2018.
8. Guo, J., F. Liu, L. Zhao, et al. "Meta-surface antenna array decoupling designs for two linear polarized antennas coupled in H-plane and E-plane," IEEE Access, Vol. 7, 100442-100452, 2019.
doi:10.1109/ACCESS.2019.2930687
9. Chae, S. H., S. Oh, and S. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 122-125, 2007, doi: 10.1109/LAWP.2007.893109.
doi:10.1109/LAWP.2007.893109
10. Yang, L., T. Li, and S. Yan, "Highly compact MIMO antenna system for LTE/ISM applications," International Journal of Antennas and Propagation, 2015, https://doi.org/10.1155/2015/714817.
11. Anitha, R., S. Mathew, P. V. Vinesh, P. Mohanan, and K. Vasudevan, "Compact 4 port MIMO antenna using polarization and pattern diversity," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), 1-4, 2015, doi: 10.1109/WAMICON.2015.7120360.
12. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, Oct. 2016, doi: 10.1109/TAP.2016.2593932.
doi:10.1109/TAP.2016.2593932
13. Iqbal, A., O. A Saraereh, A. Bouazizi, and A. Basir, "Metamaterial-based highly isolated MIMO antenna for portable wireless applications," Electronics, Vol. 7, No. 10, 267, Oct. 2018, doi: 10.3390/electronics7100267.
doi:10.3390/electronics7100267
14. Sree, G. N. J. and S. Nelaturi, "Opportunistic control of crescent shape MIMO design for lower sub 6 GHz 5G applications," Microw. Opt. Technol. Lett., Vol. 64, 896-904, 2022, doi: 10.1002/mop.33211.
doi:10.1002/mop.33211
15. Gomase, R. and S. Nandi, "A circular patch dual-band MIMO antenna for sub-6 GHz applications," 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), 1-4, 2019, doi: 10.1109/InCAP47789.2019.9134499.
16. Krishnamoorthy, R., A. Desai, R. Patel, et al. "4 element compact triple band MIMO antenna for sub-6 GHz 5G wireless applications," Wireless Netw., Vol. 27, 3747-3759, 2021, https://doi.org/10.1007/s11276-021-02734-8.
doi:10.1007/s11276-021-02734-8
17. Desai, A., et al. "Transparent 2-element 5G MIMO antenna for sub-6 GHz applications," Electronics, Vol. 11, No. 2, 251, Jan. 2022, doi: 10.3390/electronics11020251.
doi:10.3390/electronics11020251
18. Sree, G. N. J. and S. Nelaturi, "Design and experimental verification of fractal based MIMO antenna for lower sub 6-GHz 5G applications," AEU-International Journal of Electronics and Communications, Vol. 137, 153797, 2021.
19. Wang, F., Z. Duan, X. Wang, et al. "High isolation millimeter-wave wideband MIMO antenna for 5G communication," International Journal of Antennas and Propagation, 2019, https://doi.org/10.1155/2019/4283010.
20. Khandelwal, M. and K. Binod, "Implementation of four-port MIMO diversity microstrip antenna with suppressed mutual coupling and cross-polarized radiations," Microsystem Technologies, 993-1000, 2020, doi: 10.1007/s00542-019-04574-1.
21. Khalid, M., S. I. Naqvi, N. Hussain, et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, Jan. 2020, doi: 10.3390/electronics9010071.
doi:10.3390/electronics9010071
22. Sehrai, D. A., M. Abdullah, A. Altaf, et al. "A novel high gain wideband MIMO antenna for 5G millimeter wave applications," Electronics, Vol. 9, No. 6, 1031, Jun. 2020, doi: 10.3390/electronics9061031.
doi:10.3390/electronics9061031
23. Amrutha, P., K. L. V. Prasad, and S. Kumar, "Highly isolated fork-shaped MIMO antenna for 5G application," 2021 Asian Conference on Innovation in Technology (ASIANCON), 1-4, 2021, doi: 10.1109/ASIANCON51346.2021.9545004.
24. Hussain, N., W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications," AEU - International Journal of Electronics and Communications, Vol. 132, 2021, https://doi.org/10.1016/j.aeue.2021.153612.
25. Fan, C., B. Wu, Y. Hu, Y. Zhao, and T. Su, "Millimeter-wave pattern recongurable Vivaldi antenna using tunable resistor based on graphene," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4939-4943, Jun. 2020, doi: 10.1109/TAP.2019.2952639.
doi:10.1109/TAP.2019.2952639
26. Gibson, P. J., "The Vivaldi aerial," 1979 9th European Microwave Conference, 101-105, 1979, doi: 10.1109/EUMA.1979.332681.
doi:10.1109/EUMA.1979.332681
27. Gjokaj, V., J. Papapolymerou, J. D. Albrecht, B. Wright, and P. Chahal, "A compact receive module in 3-D printed Vivaldi antenna," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 10, No. 2, 343-346, Feb. 2020, doi: 10.1109/TCPMT.2019.2961345.
doi:10.1109/TCPMT.2019.2961345
28. Shan, J., A. Xu, and J. Lin, "A parametric study of microstrip-fed Vivaldi antenna," 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 1099-1103, 2017, doi: 10.1109/CompComm.2017.8322713.
doi:10.1109/CompComm.2017.8322713
29. Li, Z., C. Yin, and X. Zhu, "Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019, doi: 10.1109/ACCESS.2019.2906338.
doi:10.1109/ACCESS.2019.2906338
30. Li, Q. and Y. Sun, "A high isolation UWB MIMO antenna based on angle diversity," 2020 IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2020, doi: 10.1109/IWS49314.2020.9360073.
31. Fritz-Andrade, E., H. Jardon-Aguilar, and J. A. Tirado-Mendez, "The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, e22113, 2020, https://doi.org/10.1002/mmce.22113.
32. Elsheakh, D. M. and E. A. Abdallah, "Ultrawideband Vivaldi antenna for DVB-T, WLAN and WiMAX applications," Research Article in International Journal of Antennas and Propagation, 2014, http://dx.doi.org/10.1155/2014/761634.
33. Zhu, Y., D. Su, W. Xie, Z. Liu, and K. Zuo, "Design of a novel miniaturized Vivaldi antenna with loading resistance for ultra wideband (UWB) applications," ACES Journal, Vol. 32, No. 10, 895-900, Jul. 2021.
34. Paul, L. C. and M. M. Islam, "A super wideband directional compact Vivaldi antenna for lower 5G satellite applications," Research Article in International Journal of Antennas and Propagation, 2021, https://doi.org/10.1155/2021/8933103.
35. Ren, J., H. Fan, Q. Tang, Z. Yu, Y. Xiao, and X. Zhou, "An ultra-wideband Vivaldi antenna system for long-distance electromagnetic detection," Applied Sciences, Vol. 12, No. 1, 528, Jan. 2022, doi: 10.3390/app12010528.
doi:10.3390/app12010528
36. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," 2015 23rd Telecommunications Forum Telfor (TELFOR), 587-590, 2015, doi: 10.1109/TELFOR.2015.7377536.
doi:10.1109/TELFOR.2015.7377536
37. Zhu, S., H. Liu, Z. Chen, and P. Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 776-779, May 2018, doi: 10.1109/LAWP.2018.2816038.
doi:10.1109/LAWP.2018.2816038
38. Ikram, M., N. Nguyen-Trong, and A. M. Abbosh, "Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices," IEEE Access, Vol. 7, 159112-159118, 2019, doi: 10.1109/ACCESS.2019.2950660.
doi:10.1109/ACCESS.2019.2950660
39. Truong, L., G. Truong, and T. Tran, "A new linear printed Vivaldi antenna array with low side lobe level and high gain for the band 3.5 GHz," REV Journal on Electronics and Communications, 2020, doi: 10.10.21553/rev-jec.247.
40. Aathmanesan, T., "Novel slotted hexagonal patch antenna for sub-6 GHz 5G wireless applications," ICTACT Journal on Microelectronics, 1010-1013, 2021, doi: 10.21917/ijme.2021.0176.
41. Mishra, M., S. Chaudhuri, and R. S. Kshetrimayum, "Low mutual coupling four-port MIMO antenna array for 3.5 GHz WiMAX application," 2020 IEEE Region 10 Symposium (TENSYMP), 791-794, 2020, doi: 10.1109/TENSYMP50017.2020.923104.
doi:10.1109/TENSYMP50017.2020.9231046
42. Tebache, S., A. Belouchrani, F. Ghanem, and A. Mansoul, "Novel reliable and practical decoupling mechanism for strongly coupled antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 5892-5899, Sept. 2019, doi: 10.1109/TAP.2018.2885.
doi:10.1109/TAP.2018.2885457