Vol. 131
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-06
Investigation on a Small 4T4R MIMO Microstrip Antenna for Sub-6 GHz New Radio Wireless Network
By
Progress In Electromagnetics Research C, Vol. 131, 1-12, 2023
Abstract
The next generation 4T4R Multiple Input Multiple Output (MIMO) antenna solution is gradually accepted by operators in many countries as a mainstream expansion to long term evolution (LTE) networks. Using limited spectrum and high capacity, operators have successfully adopted multi-sector 4T4R MIMO deployment and achieved a 70% increase in capacity without increasing spectrum, thus paving way for state of art next generation wireless networking environment requiring antennae that are robust, small size, lighter, preferably with circular polarization. MIMO antennae provide optimality by arresting multipath fade effect and ensuring data link that is reliable. MIMO realizes efficiency in mobility with increase in capacity of links and several sub-bandwidths using polarization diversity providing better cybersecurity. This work therefore is an investigation on a small size 4T4R MIMO antenna for the use in a sub-6 GHz new radio (NR) band in a fading environment with good inter element as well as radiation isolation compared with earlier research. A rectangular patch with loaded slots is designed to obtain small size. Stubs and parasitic elements are introduced between the elements for better mutual coupling performance. Performance of the antenna is stable, with the test results agreeing. The parametrics follow the coefficient of transmission isolation technique to obtain an optimal envelope correlation coefficient.
Citation
Satya Singh, and Milind Thomas Themalil, "Investigation on a Small 4T4R MIMO Microstrip Antenna for Sub-6 GHz New Radio Wireless Network," Progress In Electromagnetics Research C, Vol. 131, 1-12, 2023.
doi:10.2528/PIERC23011902
References

1. Ngo, H. Q., "MIMO: Fundamentals and system designs,", PhD Thesis, Department of Elect. Engg., Linköping University, Sweden, Sept. 2015.
doi:10.1109/MCOM.2007.344587

2. Dohler, M., S. McLaughlin, D. Laurenson, M. Beach, C. M. Tan, and A. H. Aghvami, "MIMO channel measurement and modeling," IEEE Communications Magazine, Vol. 45, No. 3, 85-92, Dec. 2007.
doi:10.1109/MCOM.2007.344588

3. Dohler, M., S. McLaughlin, and A. H. Aghvami, "Implementable access for MIMO receiver architectures," IEEE Communications Magazine, Vol. 45, No. 3, 93-97, Dec. 2007.
doi:10.1561/2000000093

4. Björnson, E., J. Hoydis, and L. Sanguinetti, "MIMO networks: Energy and hardware efficiency," Trends in Signal Processing, Vol. 11, No. 3-4, 154-655, Jun. 2017.

5. Lathi, B. P. and Z. Ding, Digital Communications, ISBN 978-0-19-538493-2, 4/e, 2010.
doi:10.1109/TVT.2011.2157187

6. De Lamare, R. C., "MIMO systems: Signal processing challenges and future trends," IEEE Trans. Veh. Technol., Vol. 60, No. 6, 2482-2494, Jul. 2011.

7. Lee, W. C. Y., Mobile Communications Design Fundamentals, ISBN: 978-0-471-57446-0, Wiley 2/e, 1993.

8. Srivastava, S., A. Gupta, S. Singh, and M. T. Themalil, "Characterization and analysis of bit error rate in binary phase shift keying for future 5G MIMO environment," Int'l Conference on Innovation and Sustainability (ICIS'21), JK Lakshmipat University, Jaipur, Feb. 2021.

9. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, May 2005.
doi:10.1007/978-1-4757-3791-2

10. Waterhouse, R. B., Microstrip Patch Antennas: A Designer's Guide, Kluwer Academic, Feb. 2003.

11. Ibrahim, M. S., "MIMO antenna at Ka-band for fifth generation applications," International Journal of Communication Antennas and Propagation, Vol. 9, No. 2, 100-109, Apr. 2019.

12. Björnson, E., J. Hoydis, and L. Sanguinetti, Massive MIMO, Vol. 17, No. 1, 574-590, Transactions Wireless Communications, Jan. 2018.

13. Strategic roadmap towards 5G for Europe: RSPG on 5G networks Radio Spectrum Policy Group 18-005, Jan. 2018.
doi:10.1109/COMST.2016.2532458

14. Agiwal, M., A. Roy, and N. Saxena, "5G wireless networks survey," IEEE Communications Surveys, Vol. 18, 1617-1655, Sept. 2016.
doi:10.1109/MCOMSTD.2017.1700042

15. Parkvall, S., E. Dahlman, A. Furuskar, and M. Frenne, "5G radio access technology," IEEE Communications Standards Magazine, Vol. 1, No. 4, 24-30, Dec. 2017.
doi:10.1109/MVT.2017.2776668

16. Patzold, M., "5G readiness," IEEE Vehicular Technology Magazine, Vol. 13, No. 1, 6-13, Mar. 2018.
doi:10.1049/el.2017.2825

17. Sarkar, D. and K. V. Srivastava, "SRR loaded dual-band MIMO antenna for WLAN/WiMAX/WiFi/4G-LTE and 5G applications," Electronics Letters, Vol. 53, No. 25, 1623-1624, Jan. 2017.
doi:10.1109/TAP.2004.835272

18. Jensen, M. and J. Wallace, "Antennas and propagation for MIMO wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2810-2824, May 2004.

19. Sharawi, M. S., A. B. Numan, M. U. Khan, and D. N. Aloi, "MIMO antenna system with enhanced isolation for mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1006-1009, Oct. 2012.
doi:10.1109/LAWP.2019.2937851

20. Cui, L., J. Guo, Y. Liu, and C.-Y.-D. Sim, "An 8-element dualband MIMO antenna with decoupling stub for 5G smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2095-2099, Jun. 2019.

21. Stutzman, W. S. and G. A. Thiele, Antenna Theory and Design, John Wiley and Sons, 2009.

22. Nossek, J. A. and M. T. Ivrlac, "The why and how of multiantenna systems," International Workshop on Smart Antennas, IEEE Xplore: DOI-978-1-4244-1757-5/08, Feb. 2008.

23. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

24. Roy, J. S. and M. Thomas, "Compact broadband microstrip antennas next generation wireless communication HIPERLAN/2," Intl. Jnl. of Microwave Science and Technology, Vol. 2007, No. 10, 1-4, Jul. 2007.

25. Roy, J. S. and M. Thomas, "Investigations on a new proximity coupled dual frequency microstrip antenna," Microwave Review, Vol. 13, 12-15, Jun. 2007.

26. Roy, J. S., M. Thomas, and J. Ghosh, "Miniaturized broadband circularly polarized microstrip antenna for WLAN," International Journal of Microwave and Optical Technology, Vol. 3, No. 4, 467-473, Sept. 2008.
doi:10.2528/PIERM08050506

27. Roy, J. and M. T. Themalil, "Design of a circularly polarized microstrip antenna for WLAN," Progress In Electromagnetics Research M, Vol. 3, 79-90, 2008.

28. Thomas, M., J. S. Roy, and B. Gupta, "Design of a miniaturized proximity-coupled microstrip antenna for 5 GHz band wireless communication," ACTA Technica Journal, Vol. 55, No. 2, 131-138, Apr.-Jun. 2010.

29. Thomas, M., J. S. Roy, and B. Gupta, "Design of circularly polarized T-stub coupled microstrip antenna for WLAN," Asian Jnl. of Applied Sc., Vol. 4, No. 4, 883-888, Aug. 2016.

30. James, J. M. and M. T. Themalil, "Design of heterogeneous wireless mesh network for LTE," Journal of Computer Sci. and Tech.: E Network, Web Security, Vol. 17, No. 3, USA, Online ISSN: 0975-4172, Print ISSN: 0975-4350, 2017.

31. Themalil, M. T., S. Singh, D. Jain, D. Yadav, M. Rammal, and M. Sharma, "Miniaturization capability of pixel antenna for nanosatellite footprints," VLSI, Microwave and Wireless Technologies, Vol. 877, Lect. Notes Elec. Eng., Springer, ISBN: 978-981-19-0311-3, doi: 10.1007/978-981-19-0312-0, Mar. 20-21, 2021.

32. Singh, S. and M. T. Themalil, "Investigations on 2T2R MIMO microstrip patch antenna for next generation wireless networks," International Journal of Microwave and Optical Technology, Vol. 17, No. 6, 630-638, USA, Nov. 2022.