Vol. 131
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-30
Effects of Defect Layers and Loss Factors on Transmission Spectrum for One-Dimensional Lossy Metamaterial Photonic Crystal
By
Progress In Electromagnetics Research C, Vol. 131, 227-240, 2023
Abstract
An exhaustive numerical analysis is presented on the effects of defect layers and electric and magnetic loss factors on the transmission spectrum of one-dimensional metamaterial photonic crystal. The proposed structure is a symmetrical multilayer configuration consisting of alternating layers of lossy metamaterial and double-positive material, with a defective region in the middle. The study shows that one or more defect transmission modes are generated in photonic band gaps. The optical properties have been numerically analyzed and simulated using the transfer matrix method. Parameters, such as permittivity, thickness and number of the defect layers, influence the band gap width and the tunability of the defect peak frequency. The effects of the electric and magnetic loss factors (or damping frequencies) of the metamaterial on the intensity and on the quality factor of the defect modes are also well observed. The analysis is validated by comparing the results to some available in the literature, and the proposed structure can be exploited in the design of narrowband filters in the microwave domain.
Citation
Rawdha Thabet, Ouarda Barkat, and Mohamed Lahdi Riabi, "Effects of Defect Layers and Loss Factors on Transmission Spectrum for One-Dimensional Lossy Metamaterial Photonic Crystal," Progress In Electromagnetics Research C, Vol. 131, 227-240, 2023.
doi:10.2528/PIERC23011402
References

1. Vanbésien, O., Artificial Material, Jefferson Digital Commons, 2012.
doi:10.1002/9781118562727

2. Suthar, B. and G. N. Pandey, "Optical properties of one dimensional ternary metamaterial photonic crystal," Macromolecular Symposia, Wiley Online Library, Vol. 397, 2000340-1-2000340-3, 2021.

3. Biswas, R. and N. Mazumder, "Recent advances in plasmonic probes: Theory and practice," Springer Cham, 2022, https://doi.org/10.1007/978-3-030-99491-4.

4. Wu, F., G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, and H. Chen, "Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials," Physical Review Applied, Vol. 10, No. 6, 2018.
doi:10.1103/PhysRevApplied.10.064022

5. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Complete band gaps in one-dimensional left-handed periodic structures," Phys. Rev. Lett., Vol. 95, No. 19, 193903, 2005.
doi:10.1103/PhysRevLett.95.193903

6. Lee, C. R., S. H. Lin, S. M. Wang, J. D. Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, "Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells," J. Mater. Chem. C, Vol. 6, No. 18, 4959, 2018.
doi:10.1039/C7TC05724E

7. Xi, F. and L. Hu, "Omnidirectional reflectance gaps and resonant tunneling effect in a one-dimensional photonic crystal consisting of two metamaterials," Eur. Phys. J. D, Vol. 66, No. 2, 1, 2012.
doi:10.1140/epjd/e2011-20346-2

8. Srivastava, S. K. and A. Aghajamali, "Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials," Physica B: Condensed Matter., Vol. 489, 67-72, 2016.
doi:10.1016/j.physb.2016.01.036

9. Schurig, D., J. J. Mock, B. J. Justice, et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

10. Cong, L. Q., S. K. Valiyaveedu, J. H. Shi, and X. Q. Zhang, "Editorial: Terahertz radiation: Materials and applications," Frontiers in Physics, Vol. 9, Article 671647, 2021.

11. Isić, G., B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajiić, "Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals," Physical Review Applied, Vol. 3, Article 064007, 2015.

12. Wu, F., T. Liu, and S. Xiao, "Polarization-sensitive photonic bandgaps in hybrid one-dimensional photonic crystals composed of all-dielectric elliptical metamaterials and isotropic dielectrics," Applied Optics, Vol. 62, 706-713, 2023.
doi:10.1364/AO.480083

13. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, Aug. 2000.

14. Vynck, K., "Optical properties of nanostructured dielectric materials: From photonic crystals to metamaterials," Université Montpellier II - Sciences et Techniques du Languedoc, 2008.

15. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

17. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

18. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

19. Cui, T. J. and J. A. Kong, "Time-domain electromagnetic energy in a frequency-dispersive left-handed medium," Physical Review B, Vol. 70, 205106, 2004.
doi:10.1103/PhysRevB.70.205106

20. Jiang, H., H. Chen, H. Li, and Y. Zhang, "Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials," Appl. Phys. Lett., Vol. 83, 5386-5388, 2003.
doi:10.1063/1.1637452

21. Kumar, N., Sonika, B. Suthar, and A. Rostami, "Novel optical behaviors of metamaterial and polymer-based ternary photonic crystal with lossless and lossy features," Optics Communications, Vol. 529, 129073, 2023.
doi:10.1016/j.optcom.2022.129073

22. Ankita, S. Bissa, B. Suthar, and A. Bhargava, "Graded photonic crystal as improved sensor for nanobiophotonic application," Macromolecular Symposia, Vol. 401, 1-4, 2022.

23. Suthar, B., N. Kumar, and S. A. Taya, "Design and analysis of tunable multichannel transmission filters with a binary photonic crystal of silver/silicon," The European Physical Journal Plus, Vol. 137, 2022.

24. Sakoda, K., Optical Properties of Photonic Crystals, Springer Berlin Heidlberg, 2005.
doi:10.1007/b138376

25. Smith, D. R., R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, "Photonic band structure and defect in one and two dimensions," J. Opt. Soc. Am. B, Vol. 10, 314-321, 1993.
doi:10.1364/JOSAB.10.000314

26. Oraizi, H. and A. Abdolali, "Several theorems for reflection and transmission coefficients of plane wave incidence on planar multilayer metamaterial structures," IET Microw. Antennas Propag., Vol. 4, 1870-1879, 2010.
doi:10.1049/iet-map.2009.0468

27. Jen, Y. J., C. C. Lee, K. H. Lu, C. Y. Jheng, and Y. J. Chen, "Fabry-Perot based metal-dielectric multilayered filters and metamaterials," Optics Express, Vol. 23, 33028-33017, 2015.

28. Jiang, H., H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," Physical Review E, Vol. 69, 1-5, 2004.

29. Yeh, P., Optical Waves in Layered Media, Wiley, 1988.

30. Barkat, O., "Theoretical investigation of transmission and dispersion properties of one dimensional photonic crystal," Journal of Electrical and Electronic Engineering, Vol. 3, No. 2, 12-18, 2015.

31. Pandey, G. N. and B. Suthar, "Transmittance properties of superconductor-dielectric photonic crystal," Materials Today: Proceedings, Vol. 49, No. 1, 2021.

32. Ankita, S. Bissa, B. Suthar, C. Nayak, and A. Bhargava, "An improved optical biosensor design using defect/metal multilayer photonic crystal for malaria diagnosis," Results in Optics, Vol. 9, 2022.

33. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wesley Publishing Company, 1989.

34. Srivastava, S. K. and A. Aghajamali, "Narrow transmission mode in one-dimensional symmetric defective photonic crystal containing metamaterial and high Tc superconductor," Optica Applicata, Vol. 49, No. 1, 2019.

35. Chettah, C., O. Barkat, and A. Chaabi, "Tunable properties of optical selective filters based on one-dimensional plasma superconductor photonic crystal," Journal of Super-conductivity and Novel Magnetism, Vol. 34, 2239-2248, 2021.
doi:10.1007/s10948-021-05891-1

36. Thabet, R. and O. Barkat, "Transmission spectra in one-dimensional defective photonic crystal integrating metamaterial and superconductor," Journal of Super-conductivity and Novel Magnetism, Vol. 35, 1473-1482, 2022.
doi:10.1007/s10948-022-06195-8

37. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

38. Aly, A. H., A. A. Ameen, M. A. Mahmoud, Z. S. Matar, M. Al-Dossari, and H. A. Elsayed, "Photonic crystal enhanced by metamaterial for measuring electric permittivity in GHz range," Photonics, Vol. 8, 416, 2021.
doi:10.3390/photonics8100416

39. Pozar, D. M., Microwave Engineering, Addison-Wesley Publishing Company, 1990.

40. Park, J. H. and J. G. Park, "Uncertainty analysis of Q factor measurement in cavity resonator method by electromagnetic simulation," SN Applied Sciences, Vol. 2, 996, 2020, https://doi.org/10.1007/s42452-020-2819-8.
doi:10.1007/s42452-020-2819-8

41. Aghajamali, A., T. Alamfard, and M. Hayati, "Loss factor dependence of defect mode in a 1D defective lossy photonic crystal containing DNG materials," Optik - International Journal for Light and Electron Optics, 2015.