1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys., Vol. 10, No. 4, 509-514, 1968.
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-7, 2000.
3. Houshmand, M., M. H. Zandi, and N. E. Gorji, "Modeling of optical losses in perovskite solar cells," Sup. Latt. Micro., Vol. 97, No. 1, 424-42, 2016.
4. Islam, M. M., M. T. Islam, and M. Samsuzzaman, "Faruque MRI, compact metamaterial antenna for UWB applications," Electron. Lett., Vol. 51, No. 16, 1222-1224, 2015.
doi:10.1049/el.2015.2131
5. Khan, O. M., Z. U. Islam, Q. U. Islam, and F. A. Bhatti, "Multiband high- gain printed Yagi array using square spiral ring metamaterial structures for S-band applications," IEEE Ant. Wirel. Propag. Lett., Vol. 13, 1100-1103, 2014.
doi:10.1109/LAWP.2014.2329309
6. Zhang, K., Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, "High-efficiency metalenses with switchable functionalities in microwave region," ACS Appl. Mater. Interfaces, Vol. 11, No. 31, 28423-28430, 2019.
doi:10.1021/acsami.9b07102
7. Li, H., G. M. Wang, T. Cai, J. G. Liang, and H. Hou, "Bifunctional circularly-polarized lenses with simultaneous geometrical and propagating phase control metasurfaces," J. Phys. D: Appl. Phys., Vol. 52, No. 46, 465105, 2019.
doi:10.1088/1361-6463/ab39ac
8. Sultan, K., H. Abdullah, E. Abdallah, and E. Hashish, "Low-SAR miniaturized printed antenna for mobile, ISM, and WLAN services," IEEE Ant. Wirel. Propag. Lett., Vol. 12, 1106-1109, 2013.
doi:10.1109/LAWP.2013.2280955
9. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301
10. Kaur, S. and H. J. Kaur, "Comparative analysis of plasmonic metamaterial absorber for noble, alkaline earth and transition metals in visible region," 6th International Conference on Computing for Sustainable Global Development, 513-516, 2019.
11. Hossain, K., T. Sabapathy, M. Jusoh, et al. "Electrically tunable left-handed textile metamaterial for microwave applications," Materials, Vol. 14, No. 5, 1274, 2021.
doi:10.3390/ma14051274
12. Fang, C. Y., J. S. Gao, and H. Liu, "A novel metamaterial filter with stable passband performance based on frequency selective surface," AIP Advances, Vol. 4, No. 7, 077114, 2014.
doi:10.1063/1.4890108
13. Alam, M. J., M. R. I. Faruque, and M. T. Islam, "Labyrinth double split open loop resonator-based band pass filter design for S, C and X-band application," J. Phys. D: Appl. Phys., Vol. 51, No. 26, 1-8, 2018.
doi:10.1088/1361-6463/aac569
14. Singh, R., I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, "The Fano resonance in symmetry broken terahertz metamaterials," IEEE Trans. Terahertz Sci. Technol., Vol. 3, No. 6, 1-7, 2013.
doi:10.1109/TTHZ.2013.2285498
15. Zhou, Z. and H. Yang, "Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial," Appl. Phys., Vol. 119, No. 1, 115-119, 2015.
doi:10.1007/s00339-015-8983-9
16. Alam, M. J., M. R. I. Faruque, M. J. Hossain, and M. T. Islam, "Depiction and analysis of a modified H-shaped double-negative meta atom for satellite communication," Int. J. Microw. Wirel. Technol., Vol. 10, No. 10, 1155-1165, 2018.
doi:10.1017/S1759078718001022
17. Huangfu, J., L. Ran, H. Chen, and K. Chen, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett., Vol. 84, No. 9, 1537-1539, 2004.
doi:10.1063/1.1655673
18. Chun, Y. C., C. Y. Ping, W. Qiong, and Z. S. Chuang, "Negative refraction of a symmetrical π-shaped metamaterial," Phys. Lett., Vol. 25, No. 2, 482-484, 2008.
19. Hossain, M. J., M. R. I. Faraque, M. J. Alam, M. F. Mansor, and M. T. Islam, "A broadband negative refractive index meta-atom for quad-band and sensor applications," Microw. Opt. Technol. Lett., Vol. 60, No. 12, 2899-2907, 2018.
doi:10.1002/mop.31410
20. Alam, T., F. B. Ashraf, and M. T. Islam, "Flexible paper substrate based wide band NRI metamaterial for X-band application," Microw. Opt. Technol. Lett., Vol. 60, No. 5, 1309-1312, 2018.
doi:10.1002/mop.31145
21. Rahman, M. N., M. T. Islam, and M. Samsuzzaman, "Design and analysis of a resonator-based metamaterial for sensor applications," Microw. Opt. Technol. Lett., Vol. 60, No. 3, 694-698, 2017.
doi:10.1002/mop.31025
22. Singh, H. S., S. Kalraiya, M. K. Meshram, and R. M. Shubair, "Metamaterial inspired CPW-fed compact antenna for ultrawide band applications," Int. J. RF Microw. Comput. Aided. Eng., e21768, 2019.
23. Seshadri, A. and N. Gupta, "Modelling and analysis of metamaterial-based antenna for Wi-Fi and WLAN applications," Adv. in Comm. Dev. Net., Vol. 537, 167-173, 2019.
24. Rajasekhar, N. V. and D. S. Kumar, "Metamaterial based compact UWB planar monopole antennas," Microw. Opt. Technol. Lett., Vol. 60, No. 6, 1332-1338, 2018.
doi:10.1002/mop.31162
25. Pushkar, P. and V. R. Gupta, "A metamaterial-based tri band antenna for WiMAX/WLAN applications," Microw. Opt. Technol. Lett., Vol. 58, No. 3, 558-561, 2016.
doi:10.1002/mop.29616
26. Mahmud, M. Z., M. T. Islam, N. Misran, M. J. Singh, and K. Mat, "A negative index metamaterial to enhance the performance of miniaturized UWB antenna for microwave imaging applications," Appl. Sci., Vol. 7, 1-16, 2017.
27. Patel, S. K. and Y. Kosta, "Liquid metamaterial based microstrip antenna," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 318-322, 2018.
doi:10.1002/mop.30963
28. Nuthakki, V. R. and S. Dhamodharan, "UWB metamaterial-based miniaturized planar monopole antennas," Int. J. Electron. Comm., Vol. 82, 93-103, 2017.
doi:10.1016/j.aeue.2017.08.002
29. Rani, R. B. and S. K. Pandey, "Metamaterial-inspired printed UWB antenna for short range RADAR applications," Microw. Opt. Technol. Lett., Vol. 59, 1597-1600, 2017.
30. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microw. Opt. Technol. Lett., Vol. 58, No. 12, 3008-3012, 2016.
doi:10.1002/mop.30200
31. Arayeshnia, A., A. Bayat, M. Keshtkar-Bagheri, and S. Jarchi, "Miniaturized lowprofile antenna based on uniplanar quasi-composite right/left-handed metamaterial," Int. J. RF Microw. Comput. Aided. Eng., e21888, 2019.
32. Pandit, S., A. Mohan, and P. Ray, "Metamaterial-inspired low-profile high-gain slot antenna," Microw. Opt. Technol. Lett., 1-6, 2019.
33. Nguyen, N. L. and V. Y. Vu, "Gain enhancement for MIMO antenna using metamaterial structure," Int. J. Microw. Wirel. Technol., 1-12, 2019.
34. Arora, C., S. S. Pattnaik, and R. N. Baral, "Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array," Int. J. Microw. Wirel. Technol., Vol. 10, No. 3, 318-327, 2018.
doi:10.1017/S1759078717001428
35. Ghosh, J., D. Mitra, and S. R. B. Chaudhuri, "Reduction of leaky wave coupling in a superstrate loaded antenna using metamaterial," J. Electromag. Waves. App., Vol. 32, No. 17, 2292-2303, 2018.
doi:10.1080/09205071.2018.1507842
36. Sarkar, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Ant. Wirel. Propag. Lett., Vol. 13, 396-399, 2014.
doi:10.1109/LAWP.2014.2306812
37. Sun, Y., S. W. Cheung, and T. I. Yuk, "Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications," IET Microw. Antennas Propag., Vol. 8, No. 15, 1363-1375, 2014.
doi:10.1049/iet-map.2013.0658
38. Bahrami, H., A. Mirbozorgi, R. Ameli, L. A. Rusch, and B. Gosselin, "Flexible polarization-diverse UWB antennas for implantable neural recording systems," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 1, 38-48, 2016.
doi:10.1109/TBCAS.2015.2393878
39. Denidni, T. A. and M. A. Habib, "Broadband printed CPW-fed circular slot antenna," Electron. Lett., Vol. 42, No. 3, 135-136, 2006.
doi:10.1049/el:20063988
40. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608.1-016608.7, 2004.
doi:10.1103/PhysRevE.70.036312
41. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617.1-036617.11, 2005.
42. Sarkhel, A., D. Mitra, and S. R. B. Chaudhuri, "A compact metamaterial with multi-band negative-index characteristics," Appl. Phys. A, Vol. 471, No. 122, 1-10, 2016.
43. Negi, D., R. Khanna, and J. Kaur, "Design and performance analysis of a conformal CPW fed wideband antenna with Mu-Negative metamaterial for wearable applications," Int. J. Microw. Wirel. Technol., Vol. 11, No. 8, 1-15, 2019.
doi:10.1017/S1759078719000497
44. Negi, D., R. Khanna, and J. Kaur, "Broadband gain enhancement of an UWB antenna using conformal wideband NRI metamaterial," Frequenz., Vol. 75, 3-4, 2020.