Vol. 132
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-12
A High Gain CPW Fed Metamaterial Antenna for UWB Applications
By
Progress In Electromagnetics Research C, Vol. 132, 51-63, 2023
Abstract
A multi-resonating coplanar waveguide (CPW) fed flexible antenna using metamaterial unit cell is designed for various UWB wireless communication systems. The designed unit cell has the total dimension of 14.8 mm × 14.8 mm × 0.25 mm. The top layer of the cell has a circular ring slot combined with four modified T shaped radiators giving metamaterial characteristics. The unit cell uses perfect boundary conditions along with y axis wave propagation, and it gives wide NRI region covering 2 to 16 GHz of frequency range. The overall gain of proposed CPW fed antenna is increased by using a 3 ×3 metamaterial array as reflector at the back of antenna. The metamaterial antenna has 2 to 16 GHz of total bandwidth and peak gain of 13.1 dB. Further the measured outcomes are in accordance with the simulated ones.
Citation
Deepa Negi, and Rajesh Khanna, "A High Gain CPW Fed Metamaterial Antenna for UWB Applications," Progress In Electromagnetics Research C, Vol. 132, 51-63, 2023.
doi:10.2528/PIERC22122301
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys., Vol. 10, No. 4, 509-514, 1968.

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-7, 2000.

3. Houshmand, M., M. H. Zandi, and N. E. Gorji, "Modeling of optical losses in perovskite solar cells," Sup. Latt. Micro., Vol. 97, No. 1, 424-42, 2016.

4. Islam, M. M., M. T. Islam, and M. Samsuzzaman, "Faruque MRI, compact metamaterial antenna for UWB applications," Electron. Lett., Vol. 51, No. 16, 1222-1224, 2015.
doi:10.1049/el.2015.2131

5. Khan, O. M., Z. U. Islam, Q. U. Islam, and F. A. Bhatti, "Multiband high- gain printed Yagi array using square spiral ring metamaterial structures for S-band applications," IEEE Ant. Wirel. Propag. Lett., Vol. 13, 1100-1103, 2014.
doi:10.1109/LAWP.2014.2329309

6. Zhang, K., Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, "High-efficiency metalenses with switchable functionalities in microwave region," ACS Appl. Mater. Interfaces, Vol. 11, No. 31, 28423-28430, 2019.
doi:10.1021/acsami.9b07102

7. Li, H., G. M. Wang, T. Cai, J. G. Liang, and H. Hou, "Bifunctional circularly-polarized lenses with simultaneous geometrical and propagating phase control metasurfaces," J. Phys. D: Appl. Phys., Vol. 52, No. 46, 465105, 2019.
doi:10.1088/1361-6463/ab39ac

8. Sultan, K., H. Abdullah, E. Abdallah, and E. Hashish, "Low-SAR miniaturized printed antenna for mobile, ISM, and WLAN services," IEEE Ant. Wirel. Propag. Lett., Vol. 12, 1106-1109, 2013.
doi:10.1109/LAWP.2013.2280955

9. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301

10. Kaur, S. and H. J. Kaur, "Comparative analysis of plasmonic metamaterial absorber for noble, alkaline earth and transition metals in visible region," 6th International Conference on Computing for Sustainable Global Development, 513-516, 2019.

11. Hossain, K., T. Sabapathy, M. Jusoh, et al. "Electrically tunable left-handed textile metamaterial for microwave applications," Materials, Vol. 14, No. 5, 1274, 2021.
doi:10.3390/ma14051274

12. Fang, C. Y., J. S. Gao, and H. Liu, "A novel metamaterial filter with stable passband performance based on frequency selective surface," AIP Advances, Vol. 4, No. 7, 077114, 2014.
doi:10.1063/1.4890108

13. Alam, M. J., M. R. I. Faruque, and M. T. Islam, "Labyrinth double split open loop resonator-based band pass filter design for S, C and X-band application," J. Phys. D: Appl. Phys., Vol. 51, No. 26, 1-8, 2018.
doi:10.1088/1361-6463/aac569

14. Singh, R., I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, "The Fano resonance in symmetry broken terahertz metamaterials," IEEE Trans. Terahertz Sci. Technol., Vol. 3, No. 6, 1-7, 2013.
doi:10.1109/TTHZ.2013.2285498

15. Zhou, Z. and H. Yang, "Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial," Appl. Phys., Vol. 119, No. 1, 115-119, 2015.
doi:10.1007/s00339-015-8983-9

16. Alam, M. J., M. R. I. Faruque, M. J. Hossain, and M. T. Islam, "Depiction and analysis of a modified H-shaped double-negative meta atom for satellite communication," Int. J. Microw. Wirel. Technol., Vol. 10, No. 10, 1155-1165, 2018.
doi:10.1017/S1759078718001022

17. Huangfu, J., L. Ran, H. Chen, and K. Chen, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett., Vol. 84, No. 9, 1537-1539, 2004.
doi:10.1063/1.1655673

18. Chun, Y. C., C. Y. Ping, W. Qiong, and Z. S. Chuang, "Negative refraction of a symmetrical π-shaped metamaterial," Phys. Lett., Vol. 25, No. 2, 482-484, 2008.

19. Hossain, M. J., M. R. I. Faraque, M. J. Alam, M. F. Mansor, and M. T. Islam, "A broadband negative refractive index meta-atom for quad-band and sensor applications," Microw. Opt. Technol. Lett., Vol. 60, No. 12, 2899-2907, 2018.
doi:10.1002/mop.31410

20. Alam, T., F. B. Ashraf, and M. T. Islam, "Flexible paper substrate based wide band NRI metamaterial for X-band application," Microw. Opt. Technol. Lett., Vol. 60, No. 5, 1309-1312, 2018.
doi:10.1002/mop.31145

21. Rahman, M. N., M. T. Islam, and M. Samsuzzaman, "Design and analysis of a resonator-based metamaterial for sensor applications," Microw. Opt. Technol. Lett., Vol. 60, No. 3, 694-698, 2017.
doi:10.1002/mop.31025

22. Singh, H. S., S. Kalraiya, M. K. Meshram, and R. M. Shubair, "Metamaterial inspired CPW-fed compact antenna for ultrawide band applications," Int. J. RF Microw. Comput. Aided. Eng., e21768, 2019.

23. Seshadri, A. and N. Gupta, "Modelling and analysis of metamaterial-based antenna for Wi-Fi and WLAN applications," Adv. in Comm. Dev. Net., Vol. 537, 167-173, 2019.

24. Rajasekhar, N. V. and D. S. Kumar, "Metamaterial based compact UWB planar monopole antennas," Microw. Opt. Technol. Lett., Vol. 60, No. 6, 1332-1338, 2018.
doi:10.1002/mop.31162

25. Pushkar, P. and V. R. Gupta, "A metamaterial-based tri band antenna for WiMAX/WLAN applications," Microw. Opt. Technol. Lett., Vol. 58, No. 3, 558-561, 2016.
doi:10.1002/mop.29616

26. Mahmud, M. Z., M. T. Islam, N. Misran, M. J. Singh, and K. Mat, "A negative index metamaterial to enhance the performance of miniaturized UWB antenna for microwave imaging applications," Appl. Sci., Vol. 7, 1-16, 2017.

27. Patel, S. K. and Y. Kosta, "Liquid metamaterial based microstrip antenna," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 318-322, 2018.
doi:10.1002/mop.30963

28. Nuthakki, V. R. and S. Dhamodharan, "UWB metamaterial-based miniaturized planar monopole antennas," Int. J. Electron. Comm., Vol. 82, 93-103, 2017.
doi:10.1016/j.aeue.2017.08.002

29. Rani, R. B. and S. K. Pandey, "Metamaterial-inspired printed UWB antenna for short range RADAR applications," Microw. Opt. Technol. Lett., Vol. 59, 1597-1600, 2017.

30. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microw. Opt. Technol. Lett., Vol. 58, No. 12, 3008-3012, 2016.
doi:10.1002/mop.30200

31. Arayeshnia, A., A. Bayat, M. Keshtkar-Bagheri, and S. Jarchi, "Miniaturized lowprofile antenna based on uniplanar quasi-composite right/left-handed metamaterial," Int. J. RF Microw. Comput. Aided. Eng., e21888, 2019.

32. Pandit, S., A. Mohan, and P. Ray, "Metamaterial-inspired low-profile high-gain slot antenna," Microw. Opt. Technol. Lett., 1-6, 2019.

33. Nguyen, N. L. and V. Y. Vu, "Gain enhancement for MIMO antenna using metamaterial structure," Int. J. Microw. Wirel. Technol., 1-12, 2019.

34. Arora, C., S. S. Pattnaik, and R. N. Baral, "Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array," Int. J. Microw. Wirel. Technol., Vol. 10, No. 3, 318-327, 2018.
doi:10.1017/S1759078717001428

35. Ghosh, J., D. Mitra, and S. R. B. Chaudhuri, "Reduction of leaky wave coupling in a superstrate loaded antenna using metamaterial," J. Electromag. Waves. App., Vol. 32, No. 17, 2292-2303, 2018.
doi:10.1080/09205071.2018.1507842

36. Sarkar, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Ant. Wirel. Propag. Lett., Vol. 13, 396-399, 2014.
doi:10.1109/LAWP.2014.2306812

37. Sun, Y., S. W. Cheung, and T. I. Yuk, "Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications," IET Microw. Antennas Propag., Vol. 8, No. 15, 1363-1375, 2014.
doi:10.1049/iet-map.2013.0658

38. Bahrami, H., A. Mirbozorgi, R. Ameli, L. A. Rusch, and B. Gosselin, "Flexible polarization-diverse UWB antennas for implantable neural recording systems," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 1, 38-48, 2016.
doi:10.1109/TBCAS.2015.2393878

39. Denidni, T. A. and M. A. Habib, "Broadband printed CPW-fed circular slot antenna," Electron. Lett., Vol. 42, No. 3, 135-136, 2006.
doi:10.1049/el:20063988

40. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608.1-016608.7, 2004.
doi:10.1103/PhysRevE.70.036312

41. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617.1-036617.11, 2005.

42. Sarkhel, A., D. Mitra, and S. R. B. Chaudhuri, "A compact metamaterial with multi-band negative-index characteristics," Appl. Phys. A, Vol. 471, No. 122, 1-10, 2016.

43. Negi, D., R. Khanna, and J. Kaur, "Design and performance analysis of a conformal CPW fed wideband antenna with Mu-Negative metamaterial for wearable applications," Int. J. Microw. Wirel. Technol., Vol. 11, No. 8, 1-15, 2019.
doi:10.1017/S1759078719000497

44. Negi, D., R. Khanna, and J. Kaur, "Broadband gain enhancement of an UWB antenna using conformal wideband NRI metamaterial," Frequenz., Vol. 75, 3-4, 2020.